Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
On approximate solution of one singular perturbation boundary value problem. / Kulikov, E. K.; Makarov, A. A.
в: Differencialnie Uravnenia i Protsesy Upravlenia, № 1, 2020, стр. 91-102.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - On approximate solution of one singular perturbation boundary value problem
AU - Kulikov, E. K.
AU - Makarov, A. A.
N1 - Publisher Copyright: © 2020 Saint-Petersburg State University. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.
AB - The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.
KW - B-splines
KW - Boundary layer components
KW - De boor-fix type functionals
KW - Minimal splines
KW - Shishkin grids
UR - http://www.scopus.com/inward/record.url?scp=85097596493&partnerID=8YFLogxK
M3 - статья
AN - SCOPUS:85097596493
SP - 91
EP - 102
JO - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1817-2172
IS - 1
ER -
ID: 72078660