Standard

On approximate solution of one singular perturbation boundary value problem. / Kulikov, E. K.; Makarov, A. A.

в: Differencialnie Uravnenia i Protsesy Upravlenia, № 1, 2020, стр. 91-102.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kulikov, EK & Makarov, AA 2020, 'On approximate solution of one singular perturbation boundary value problem', Differencialnie Uravnenia i Protsesy Upravlenia, № 1, стр. 91-102.

APA

Kulikov, E. K., & Makarov, A. A. (2020). On approximate solution of one singular perturbation boundary value problem. Differencialnie Uravnenia i Protsesy Upravlenia, (1), 91-102.

Vancouver

Kulikov EK, Makarov AA. On approximate solution of one singular perturbation boundary value problem. Differencialnie Uravnenia i Protsesy Upravlenia. 2020;(1):91-102.

Author

Kulikov, E. K. ; Makarov, A. A. / On approximate solution of one singular perturbation boundary value problem. в: Differencialnie Uravnenia i Protsesy Upravlenia. 2020 ; № 1. стр. 91-102.

BibTeX

@article{4f94d37d20d4462691a3342e57e54ae2,
title = "On approximate solution of one singular perturbation boundary value problem",
abstract = "The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.",
keywords = "B-splines, Boundary layer components, De boor-fix type functionals, Minimal splines, Shishkin grids",
author = "Kulikov, {E. K.} and Makarov, {A. A.}",
note = "Publisher Copyright: {\textcopyright} 2020 Saint-Petersburg State University. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
language = "русский",
pages = "91--102",
journal = "ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1817-2172",
publisher = "Электронный журнал {"}Дифференциальные уравнения и процессы управления{"}",
number = "1",

}

RIS

TY - JOUR

T1 - On approximate solution of one singular perturbation boundary value problem

AU - Kulikov, E. K.

AU - Makarov, A. A.

N1 - Publisher Copyright: © 2020 Saint-Petersburg State University. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020

Y1 - 2020

N2 - The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.

AB - The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.

KW - B-splines

KW - Boundary layer components

KW - De boor-fix type functionals

KW - Minimal splines

KW - Shishkin grids

UR - http://www.scopus.com/inward/record.url?scp=85097596493&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:85097596493

SP - 91

EP - 102

JO - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1817-2172

IS - 1

ER -

ID: 72078660