The paper considers the problem of approximation of a function that is a solution of singular perturbation boundary value problem. Such functions have huge boundary layer components, so the applying classical algorithms to them leads to essential errors. We introduce an approach that is a local approximation scheme based on minimal splines on the Shishkin grid, where coefficients of basis functions are calculated as the values of de Boor-Fix type functionals. We also present the results of numerical experiments showing that our approach allows obtaining the approximation of high quality.

Переведенное названиеOn approximate solution of one singular perturbation boundary value problem
Язык оригиналарусский
Страницы (с-по)91-102
Число страниц12
ЖурналDifferencialnie Uravnenia i Protsesy Upravlenia
Номер выпуска1
СостояниеОпубликовано - 2020

    Области исследований

  • B-splines, Boundary layer components, De boor-fix type functionals, Minimal splines, Shishkin grids

    Предметные области Scopus

  • Анализ
  • Программный продукт
  • Информационные системы
  • Прикладные компьютерные науки
  • Теория оптимизации
  • Прикладная математика

ID: 72078660