Standard

On a theorem of existence for scaling problems. / Osmolovskiî, V. G.

в: Journal of Mathematical Sciences , Том 77, № 4, 01.12.1995, стр. 3323-3336.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Osmolovskiî, VG 1995, 'On a theorem of existence for scaling problems', Journal of Mathematical Sciences , Том. 77, № 4, стр. 3323-3336. https://doi.org/10.1007/BF02364864

APA

Vancouver

Osmolovskiî VG. On a theorem of existence for scaling problems. Journal of Mathematical Sciences . 1995 Дек. 1;77(4):3323-3336. https://doi.org/10.1007/BF02364864

Author

Osmolovskiî, V. G. / On a theorem of existence for scaling problems. в: Journal of Mathematical Sciences . 1995 ; Том 77, № 4. стр. 3323-3336.

BibTeX

@article{ec10477b0ecb479e8a32384e42971e49,
title = "On a theorem of existence for scaling problems",
abstract = "We study the question of the existence of the global minimum of the functional {Mathematical expression} over the set of functions {Mathematical expression} where Ω ⊂ℝn is a bounded domain, and a fixed function K(x,y)=K(y,x) belongs to L2(Ω×Ω). Such functionals arise in some mathematical models of economics and sociology. Bibliography: 6 titles.",
author = "Osmolovski{\^i}, {V. G.}",
year = "1995",
month = dec,
day = "1",
doi = "10.1007/BF02364864",
language = "English",
volume = "77",
pages = "3323--3336",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - On a theorem of existence for scaling problems

AU - Osmolovskiî, V. G.

PY - 1995/12/1

Y1 - 1995/12/1

N2 - We study the question of the existence of the global minimum of the functional {Mathematical expression} over the set of functions {Mathematical expression} where Ω ⊂ℝn is a bounded domain, and a fixed function K(x,y)=K(y,x) belongs to L2(Ω×Ω). Such functionals arise in some mathematical models of economics and sociology. Bibliography: 6 titles.

AB - We study the question of the existence of the global minimum of the functional {Mathematical expression} over the set of functions {Mathematical expression} where Ω ⊂ℝn is a bounded domain, and a fixed function K(x,y)=K(y,x) belongs to L2(Ω×Ω). Such functionals arise in some mathematical models of economics and sociology. Bibliography: 6 titles.

UR - http://www.scopus.com/inward/record.url?scp=34249761343&partnerID=8YFLogxK

U2 - 10.1007/BF02364864

DO - 10.1007/BF02364864

M3 - Article

AN - SCOPUS:34249761343

VL - 77

SP - 3323

EP - 3336

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 42743157