Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
OBSERVING SOIL MOISTURE CHANGE USING C-BAND INTERFEROMETRY USING MACHINE LEARNING REGRESSION. / Mira, Nuno Cirne; Catalão, João; Nico, Giovanni.
International Geoscience and Remote Sensing Symposium (IGARSS). 2021. стр. 6343-6346.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - OBSERVING SOIL MOISTURE CHANGE USING C-BAND INTERFEROMETRY USING MACHINE LEARNING REGRESSION
AU - Mira, Nuno Cirne
AU - Catalão, João
AU - Nico, Giovanni
PY - 2021/1/1
Y1 - 2021/1/1
N2 - The observation of soil moisture is fundamental for several climate sciences. Remote sensing had proved that it is possible to observe soil moisture from both Synthetic Aperture Radar (SAR) and SAR interferometry (InSAR) observables. This paper shows the use of machine learning regression algorithms to estimate soil moisture change using the InSAR coherence and phase and the soil type. Random Forest Regression and Extra-Tree and Bagging Regression were used. The purpose is to evaluate the improvement gain with the inclusion of “non-conventional” data such as the soil type on the estimation of soil moisture variations in time. The results point out that the inclusion of the soil type improves the estimation with coefficient of determination - R2 up to 72%.
AB - The observation of soil moisture is fundamental for several climate sciences. Remote sensing had proved that it is possible to observe soil moisture from both Synthetic Aperture Radar (SAR) and SAR interferometry (InSAR) observables. This paper shows the use of machine learning regression algorithms to estimate soil moisture change using the InSAR coherence and phase and the soil type. Random Forest Regression and Extra-Tree and Bagging Regression were used. The purpose is to evaluate the improvement gain with the inclusion of “non-conventional” data such as the soil type on the estimation of soil moisture variations in time. The results point out that the inclusion of the soil type improves the estimation with coefficient of determination - R2 up to 72%.
KW - Interferometric Coherence
KW - Machine Learning
KW - SAR Interferometry (InSAR)
KW - Soil Moisture
KW - Synthetic Aperture Radar (SAR)
UR - http://www.scopus.com/inward/record.url?scp=85129904581&partnerID=8YFLogxK
U2 - 10.1109/IGARSS47720.2021.9554692
DO - 10.1109/IGARSS47720.2021.9554692
M3 - Conference contribution
AN - SCOPUS:85129904581
SP - 6343
EP - 6346
BT - International Geoscience and Remote Sensing Symposium (IGARSS)
T2 - 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
Y2 - 11 July 2021 through 16 July 2021
ER -
ID: 114329484