DOI

The observation of soil moisture is fundamental for several climate sciences. Remote sensing had proved that it is possible to observe soil moisture from both Synthetic Aperture Radar (SAR) and SAR interferometry (InSAR) observables. This paper shows the use of machine learning regression algorithms to estimate soil moisture change using the InSAR coherence and phase and the soil type. Random Forest Regression and Extra-Tree and Bagging Regression were used. The purpose is to evaluate the improvement gain with the inclusion of “non-conventional” data such as the soil type on the estimation of soil moisture variations in time. The results point out that the inclusion of the soil type improves the estimation with coefficient of determination - R2 up to 72%.
Язык оригиналаанглийский
Название основной публикацииInternational Geoscience and Remote Sensing Symposium (IGARSS)
Страницы6343-6346
Число страниц4
DOI
СостояниеОпубликовано - 1 янв 2021
Событие 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS - Brussels, Бельгия
Продолжительность: 11 июл 202116 июл 2021

конференция

конференция 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
Страна/TерриторияБельгия
ГородBrussels
Период11/07/2116/07/21

ID: 114329484