Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
New Index Formulas as a Meromorphic Generalization of the Chern-Gauss-Bonnet Theorem. / Borisov, N. V.; Illinski, K. N.; Kalinin, G. V.
в: Letters in Mathematical Physics, Том 43, № 3, 01.01.1998, стр. 249-262.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - New Index Formulas as a Meromorphic Generalization of the Chern-Gauss-Bonnet Theorem
AU - Borisov, N. V.
AU - Illinski, K. N.
AU - Kalinin, G. V.
PY - 1998/1/1
Y1 - 1998/1/1
N2 - Laplace operators perturbed by meromorphic potential on the Riemann and separated-type Klein surfaces are constructed and their indices are calculated in two different ways. The topological expressions for the indices are obtained from the study of the spectral properties of the operators. Analytical expressions are provided by the heat kernel approach in terms of functional integrals. As a result, two formulae connecting characteristics of meromorphic (real meromorphic) functions and topological properties of Riemann (separated-type Klein) surfaces are derived.
AB - Laplace operators perturbed by meromorphic potential on the Riemann and separated-type Klein surfaces are constructed and their indices are calculated in two different ways. The topological expressions for the indices are obtained from the study of the spectral properties of the operators. Analytical expressions are provided by the heat kernel approach in terms of functional integrals. As a result, two formulae connecting characteristics of meromorphic (real meromorphic) functions and topological properties of Riemann (separated-type Klein) surfaces are derived.
KW - Index
KW - Klein surface
KW - Meromorphic function
KW - Supersymmetry
UR - http://www.scopus.com/inward/record.url?scp=1842685614&partnerID=8YFLogxK
U2 - 10.1023/A:1007422323346
DO - 10.1023/A:1007422323346
M3 - Article
AN - SCOPUS:1842685614
VL - 43
SP - 249
EP - 262
JO - Letters in Mathematical Physics
JF - Letters in Mathematical Physics
SN - 0377-9017
IS - 3
ER -
ID: 39882860