DOI

Laplace operators perturbed by meromorphic potential on the Riemann and separated-type Klein surfaces are constructed and their indices are calculated in two different ways. The topological expressions for the indices are obtained from the study of the spectral properties of the operators. Analytical expressions are provided by the heat kernel approach in terms of functional integrals. As a result, two formulae connecting characteristics of meromorphic (real meromorphic) functions and topological properties of Riemann (separated-type Klein) surfaces are derived.

Язык оригиналаанглийский
Страницы (с-по)249-262
Число страниц14
ЖурналLetters in Mathematical Physics
Том43
Номер выпуска3
DOI
СостояниеОпубликовано - 1 янв 1998

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 39882860