DOI

It is widely accepted that nowadays a significant part of the content on the internet is generated by users of social media platforms which form the basis of Web 2.0. That is why modern media researchers use user-generated content to test their scientific hypotheses using automated data analysis methods and data mining tools. In this study we examine the main approaches to user opinion data crawling in modern social media platforms for subsequent analysis for scientific and research purposes. We propose a data collection approach based on reverse engineering of APK applications, which allows for data extraction from social networks that will not differ in completeness from data from mobile applications. A comparative analysis of the proposed methods in terms of completeness and execution speed is also carried out. According to our findings, implementing a custom REST API is the best approach as it is both reliable and computationally efficient.
Язык оригиналаанглийский
Название основной публикацииSocial Computing and Social Media. HCII 2024.
ИздательSpringer Nature
Страницы72-81
Число страниц10
ISBN (электронное издание)978-3-031-61281-7
ISBN (печатное издание)978-3-031-61280-0
DOI
СостояниеОпубликовано - 2024
СобытиеSocial Computing and Social Media: 16th International Conference: Held as Part of the 26th HCI International Conference - Washington, Соединенные Штаты Америки
Продолжительность: 29 июн 20244 июл 2024

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том14703 LNCS

конференция

конференцияSocial Computing and Social Media: 16th International Conference
Сокращенное названиеSCSM 2024
Страна/TерриторияСоединенные Штаты Америки
ГородWashington
Период29/06/244/07/24

ID: 125271477