DOI

Graph-walking automata (GWA) traverse graphs by moving between the nodes following the edges, using a finite-state control to decide where to go next. It is known that every GWA can be transformed to a GWA that halts on every input, to a GWA returning to the initial node in order to accept, as well as to a reversible GWA. This paper establishes lower bounds on the state blow-up of these transformations: it is shown that making an n-state GWA traversing k-ary graphs return to the initial node requires at least 2(n - 1)(k - 3) states in the worst case; the same lower bound holds for the transformation to halting automata. Automata satisfying both properties at once must have at least 4(n - 1)(k - 3) states. A reversible automaton must have at least 4(n - 1)(k - 3) - 1 states. These bounds are asymptotically tight to the upper bounds proved using the methods from the literature.

Язык оригиналаанглийский
Название основной публикации38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021
РедакторыMarkus Blaser, Benjamin Monmege
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Число страниц13
ISBN (электронное издание)9783959771801
DOI
СостояниеОпубликовано - 1 мар 2021
Событие38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021 - Virtual, Saarbrucken, Германия
Продолжительность: 16 мар 202119 мар 2021

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том187
ISSN (печатное издание)1868-8969

конференция

конференция38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021
Страна/TерриторияГермания
ГородVirtual, Saarbrucken
Период16/03/2119/03/21

    Предметные области Scopus

  • Программный продукт

ID: 85901002