Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter. / Пилюгин, Сергей Юрьевич; Шалгин, Владимир Сергеевич.
в: Journal of Dynamical and Control Systems, Том 30, № 2, 14, 11.07.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter
AU - Пилюгин, Сергей Юрьевич
AU - Шалгин, Владимир Сергеевич
PY - 2024/7/11
Y1 - 2024/7/11
N2 - In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class ${\cal P}$ of possible perturbations of the selected parameter $P^0$ and finds conditions on observations of trajectories under which all parameters $P \in {\cal P}$ close to $P^0$ coincide with $P^0$. We consider discrete dynamical systems for which the trajectories are observed at points $k=1, 2, \ldots$ or at a countable set of points $0<t_1<t_2<\ldots$. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.
AB - In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class ${\cal P}$ of possible perturbations of the selected parameter $P^0$ and finds conditions on observations of trajectories under which all parameters $P \in {\cal P}$ close to $P^0$ coincide with $P^0$. We consider discrete dynamical systems for which the trajectories are observed at points $k=1, 2, \ldots$ or at a countable set of points $0<t_1<t_2<\ldots$. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.
KW - динамические системы
KW - локальная параметрическая идентифицируемость
KW - диффеоморфизм
KW - гиперболическое множество
KW - dynamical system
KW - local parameter identifiability
KW - diffeomorphism
KW - hyperbolic sets
KW - Local parameter identifiability
KW - Diffeomorphism
KW - Hyperbolic set
KW - Dynamical system
KW - 93B30
UR - https://www.mendeley.com/catalogue/13305f86-de62-3741-a981-a9ae4e9050cb/
U2 - 10.1007/s10883-024-09699-9
DO - 10.1007/s10883-024-09699-9
M3 - Article
VL - 30
JO - Journal of Dynamical and Control Systems
JF - Journal of Dynamical and Control Systems
SN - 1079-2724
IS - 2
M1 - 14
ER -
ID: 126322821