Standard

Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter. / Пилюгин, Сергей Юрьевич; Шалгин, Владимир Сергеевич.

в: Journal of Dynamical and Control Systems, Том 30, № 2, 14, 11.07.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{0a813d5284b94d059ecefb8d66ba601a,
title = "Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter",
abstract = "In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class ${\cal P}$ of possible perturbations of the selected parameter $P^0$ and finds conditions on observations of trajectories under which all parameters $P \in {\cal P}$ close to $P^0$ coincide with $P^0$. We consider discrete dynamical systems for which the trajectories are observed at points $k=1, 2, \ldots$ or at a countable set of points $0<t_1<t_2<\ldots$. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.",
keywords = "динамические системы, локальная параметрическая идентифицируемость, диффеоморфизм, гиперболическое множество, dynamical system, local parameter identifiability, diffeomorphism, hyperbolic sets, Local parameter identifiability, Diffeomorphism, Hyperbolic set, Dynamical system, 93B30",
author = "Пилюгин, {Сергей Юрьевич} and Шалгин, {Владимир Сергеевич}",
year = "2024",
month = jul,
day = "11",
doi = "10.1007/s10883-024-09699-9",
language = "English",
volume = "30",
journal = "Journal of Dynamical and Control Systems",
issn = "1079-2724",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter

AU - Пилюгин, Сергей Юрьевич

AU - Шалгин, Владимир Сергеевич

PY - 2024/7/11

Y1 - 2024/7/11

N2 - In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class ${\cal P}$ of possible perturbations of the selected parameter $P^0$ and finds conditions on observations of trajectories under which all parameters $P \in {\cal P}$ close to $P^0$ coincide with $P^0$. We consider discrete dynamical systems for which the trajectories are observed at points $k=1, 2, \ldots$ or at a countable set of points $0<t_1<t_2<\ldots$. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.

AB - In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class ${\cal P}$ of possible perturbations of the selected parameter $P^0$ and finds conditions on observations of trajectories under which all parameters $P \in {\cal P}$ close to $P^0$ coincide with $P^0$. We consider discrete dynamical systems for which the trajectories are observed at points $k=1, 2, \ldots$ or at a countable set of points $0<t_1<t_2<\ldots$. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.

KW - динамические системы

KW - локальная параметрическая идентифицируемость

KW - диффеоморфизм

KW - гиперболическое множество

KW - dynamical system

KW - local parameter identifiability

KW - diffeomorphism

KW - hyperbolic sets

KW - Local parameter identifiability

KW - Diffeomorphism

KW - Hyperbolic set

KW - Dynamical system

KW - 93B30

UR - https://www.mendeley.com/catalogue/13305f86-de62-3741-a981-a9ae4e9050cb/

U2 - 10.1007/s10883-024-09699-9

DO - 10.1007/s10883-024-09699-9

M3 - Article

VL - 30

JO - Journal of Dynamical and Control Systems

JF - Journal of Dynamical and Control Systems

SN - 1079-2724

IS - 2

M1 - 14

ER -

ID: 126322821