Standard

Kinetically controlled composition of III-V ternary nanostructures. / Dubrovskii , Vladimir G. ; Leshchenko, Egor D. .

в: Physical Review Materials, Том 7, № 5, 056001, 2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{8f0272a63ac7437788dddcc97262dbdd,
title = "Kinetically controlled composition of III-V ternary nanostructures",
abstract = "Controlling the composition of ternary III-V and III-nitride nanomaterials such as vertical nanowires, horizontal nanowires, nanosheets, and nanomembranes grown by different epitaxy techniques is essential for band gap engineering and fabrication of nanoheterostructures with tunable properties. Herein, we investigate the diffusion-induced growth process of III-V ternary materials in different geometries including planar layers, nanomembranes, and horizontal and vertical nanowires grown by selective area epitaxy or with a catalyst droplet on top and derive a rather general equation connecting the composition of ternary solid with the composition of vapor. The form of this vapor-solid distribution remains identical for a wide range of geometries, while the coefficients entering the equation contain thermodynamic factors, kinetic constants of the material transport, and geometrical parameters of the growth template. General properties of the vapor-solid distribution are investigated with respect to material constants, growth condition, and geometry, including the interplay of thermodynamics and growth kinetics leading to the suppression of the miscibility gaps in InGaAs and InGaN systems. A good correlation of the model with the data on the compositions of InGaAs, InGaP, and AlGaAs materials grown by different methods is demonstrated. Overall, these results give a simple analytical tool for understanding the compositional trends and compositional tuning of III-V ternary nanostructures, which should work equally well for Si-Ge and II-VI material systems.",
author = "Dubrovskii, {Vladimir G.} and Leshchenko, {Egor D.}",
year = "2023",
language = "English",
volume = "7",
journal = "Physical Review Materials",
issn = "2475-9953",
publisher = "American Physical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Kinetically controlled composition of III-V ternary nanostructures

AU - Dubrovskii , Vladimir G.

AU - Leshchenko, Egor D.

PY - 2023

Y1 - 2023

N2 - Controlling the composition of ternary III-V and III-nitride nanomaterials such as vertical nanowires, horizontal nanowires, nanosheets, and nanomembranes grown by different epitaxy techniques is essential for band gap engineering and fabrication of nanoheterostructures with tunable properties. Herein, we investigate the diffusion-induced growth process of III-V ternary materials in different geometries including planar layers, nanomembranes, and horizontal and vertical nanowires grown by selective area epitaxy or with a catalyst droplet on top and derive a rather general equation connecting the composition of ternary solid with the composition of vapor. The form of this vapor-solid distribution remains identical for a wide range of geometries, while the coefficients entering the equation contain thermodynamic factors, kinetic constants of the material transport, and geometrical parameters of the growth template. General properties of the vapor-solid distribution are investigated with respect to material constants, growth condition, and geometry, including the interplay of thermodynamics and growth kinetics leading to the suppression of the miscibility gaps in InGaAs and InGaN systems. A good correlation of the model with the data on the compositions of InGaAs, InGaP, and AlGaAs materials grown by different methods is demonstrated. Overall, these results give a simple analytical tool for understanding the compositional trends and compositional tuning of III-V ternary nanostructures, which should work equally well for Si-Ge and II-VI material systems.

AB - Controlling the composition of ternary III-V and III-nitride nanomaterials such as vertical nanowires, horizontal nanowires, nanosheets, and nanomembranes grown by different epitaxy techniques is essential for band gap engineering and fabrication of nanoheterostructures with tunable properties. Herein, we investigate the diffusion-induced growth process of III-V ternary materials in different geometries including planar layers, nanomembranes, and horizontal and vertical nanowires grown by selective area epitaxy or with a catalyst droplet on top and derive a rather general equation connecting the composition of ternary solid with the composition of vapor. The form of this vapor-solid distribution remains identical for a wide range of geometries, while the coefficients entering the equation contain thermodynamic factors, kinetic constants of the material transport, and geometrical parameters of the growth template. General properties of the vapor-solid distribution are investigated with respect to material constants, growth condition, and geometry, including the interplay of thermodynamics and growth kinetics leading to the suppression of the miscibility gaps in InGaAs and InGaN systems. A good correlation of the model with the data on the compositions of InGaAs, InGaP, and AlGaAs materials grown by different methods is demonstrated. Overall, these results give a simple analytical tool for understanding the compositional trends and compositional tuning of III-V ternary nanostructures, which should work equally well for Si-Ge and II-VI material systems.

UR - https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.7.056001

M3 - Article

VL - 7

JO - Physical Review Materials

JF - Physical Review Materials

SN - 2475-9953

IS - 5

M1 - 056001

ER -

ID: 107027204