Документы

  • Paper

    2,25 MB, Документ PDF

The paper compares analytical and numerical solutions for two-dimensional solid mechanics problems of elastic bimaterial composites with a nanosized interface relief that arises on a boundary between two bulk layers and on an interface of a nearly circular inclusion. It is supposed that the uniform stress state takes place at infinity. Here, we use Gurtin - Murdoch model in which interphase domains are represented as negligibly thin layers ideally adhering to the bulk phases. Static boundary conditions at the interface are formulated according to the generalized Laplace - Young law. To solve corresponding boundary value we use first-order boundary perturbation method based on Goursat - Kolosov complex potentials. To examine the perturbation results, we use a finite element calculations.

Язык оригиналаанглийский
Название основной публикации8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019
РедакторыEugenio Onate, Manolis Papadrakakis, Bernhard A. Schrefler
ИздательInternational Center for Numerical Methods in Engineering
Страницы679-688
Число страниц10
ISBN (электронное издание)9788494919459
СостояниеОпубликовано - 2021
Событие8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019 - Barcelona, Испания
Продолжительность: 3 июн 20195 июн 2019

Серия публикаций

Название8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019

конференция

конференция8th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019
Страна/TерриторияИспания
ГородBarcelona
Период3/06/195/06/19

    Предметные области Scopus

  • Вычислительная математика
  • Прикладная математика

ID: 51526184