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Abstract. The paper compares analytical and numerical solutions for two-dimensional
solid mechanics problems of elastic bimaterial composites with a nanosized interface relief
that arises on a boundary between two bulk layers and on an interface of a nearly circular
inclusion. It is supposed that the uniform stress state takes place at infinity. Here, we use
Gurtin –Murdoch model in which interphase domains are represented as negligibly thin
layers ideally adhering to the bulk phases. Static boundary conditions at the interface
are formulated according to the generalized Laplace –Young law. To solve corresponding
boundary value we use first-order boundary perturbation method based on Goursat –
Kolosov complex potentials. To examine the perturbation results, we use a finite element
calculations.

1 INTRODUCTION

At the macrolevel, the effect of surface/interface energy for a stressed solid is ignored as
it is small compared to the bulk energy [1]. However, the surface/interface effects become
significant for nanoscale materials and structures due to the high surface-to-volume ratio.
Stress fields in the vicinity of nanosized structures can appreciably depend on the surface
energy and surface stresses, which was first proposed by Gibbs [2]. As a result, the
surface/interface stresses are directly related to the size effect, that means the material
properties of a specimen depend on its size. To explain the surface phenomena, Gurtin
and Murdoch developed the surface elasticity theory [3, 4] which is based on the concept
of the surface strain energy and surface stress. The continuum surface/interface stress
model assumes that solid consists of bulk and surface phases which are perfectly bonded
and have different elastic properties. This theory was confirmed by molecular dynamics
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simulations [5]. In numerous papers, a finite element modeling was presented to explore
the effects of surface/interface stresses in nanoscale structures (see, for example, [6, 7]).
In summary, the consideration of these models helps to understand the unusual elastic
properties of nanomaterials.

In the work [8], boundary perturbation method (BPM) was used to solve the prob-
lem of an elastic infinity plane with a nearly circular inclusion at the macrolevel. The
influence of surface stress on an elastic materials containing the nanosized topological de-
fects at external boundary and at internal void boundary was investigated in [9]. Special
features of the surface layer behavior in a stressed material particularly is that an ini-
tially smooth surface becomes rough under a number of natural phenomena: heat, light,
short-wavelength electromagnetic radiation, radioactive emissions, chemicals, mechanical
stress, etc. [10]–[14].

Based on the approaches developed in [8, 9, 15], we study the effect of interfacial
stresses on stress-strain state of elastic bimaterial with a smooth undulated interface.
We consider the 2-D solid mechanics problems of elastic bimaterial composites with a
nanometer interface relief that arises between two different bulk layers (the first problem)
and between a nearly circular inclusion and a matrix (the second problem). It is supposed
that the uniform stress state takes place at infinity. Here, we use Gurtin –Murdoch model
[3, 4] in which interphase domains are represented as negligibly thin layers ideally adhering
to the bulk phases. Static boundary conditions at the interface are formulated according
to the generalized Laplace –Young law [16]. To solve corresponding boundary value we use
first-order boundary perturbation method based on Goursat –Kolosov complex potentials.
As a result, we come to the hypersingular integral equations in the unknown interfacial
stress for any-order approximation of the perturbation procedure. The numerical results
are given for a first-order approximation. To examine the perturbation results, we use
finite element method (FEM).

2 FORMULATION OF THE PROBLEM

The first problem is following: we consider an elastic isotropic bimaterial with slightly
perturbated interface under the uniaxial tension (Fig. 1). It is assumed that the inter-
face profile is defined by the periodic function (1). The interface domain has an elastic
properties which differ from the bulk ones. Following Gurtin –Murdoch model of surface
elasticity [3, 4], this domain is represented as a negligibly thin layer Γ adhering to the
bulk phases B1 and B2 without slipping:

Γ = {z : z = x1 − iε1a cos (bx1)} , b =
2π

a
, ε1 =

A

a
� 1

B1 = {z : x2 < ε1a cos (bx1)} , B2 = {z : x2 > ε1a cos (bx1)} ,
(1)

where a is the wavelength of perturbation, b is the wavenumber and ε1 is the small
parameter.
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Figure 1: A model of bimaterial with curved interface under uniaxial tension.

The second problem describes an elastic plane with a nearly circular nanoinclusion
(Fig. 2). In this case the interface between the matrix and inclusion Γ is defined by the
relation:

Γ =
{
z : z ≡ ζ = r (1 + ε2 cos 2θ) e

iθ
}
, (2)

where ε2 is the small parameter which is equal to the maximum deviation of the interface
from the circular one of radius r, ε2 > 0, ε2 � 1.

Figure 2: Interface profile of the nanoinclusion described by the cosine function (firm line) for r = 1 nm
and ε2 = 0, 1.
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In equations (1) and (2), z = x1+ ix2 is the complex variable (i is the imaginary unit).
The elastic properties of each domain Bk, Ωk, k = 1, 2, are determined by the Poisson’s
ratio νk and shear modulus µk.

We assume that the discontinuity of the displacement on the interface Γ between two
domains is absent and the stress jump ∆σk (k = 1, 2) is determined by the interfacial
stress τ according to the generalized Laplace –Young law [9, 15]. The contact conditions
can be written in the form

∆σn(ζ) = σ+
n − σ−

n =
τ

R
− i

1

h

dτ

dθ
≡ ts(ζ), ∆u(ζ) = u+ − u− = 0. (3)

Stresses σij (i, j = 1, 2) and the rotational angle ω of a material particle are specified at
infinity as

lim
z→∞

σij = σ∞
ij , lim

z→∞
ω = 0.

Here, σn = σnn + iσnt, σnn, σnt are the components of stress vector σn at the area
with the normal n in the local Cartesian coordinates n, t; u = u1 + iu2, u1, u2 are the
displacements along axes of the global Cartesian coordinates x1, x2; τ is the interfacial
stress. In equation (3), σ±

n = lim
z→ζ∈Γ

σn(z), u
± = lim

z→ζ∈Γ
u(z), h is the metric coefficient [17]

and R is the curvature radius of the boundary. The superscript ”–” corresponds to z ∈ B1

for the first problem and z ∈ Ω1 for the second problem; ”+” to z ∈ B2 and z ∈ Ω2,
correspondently.

According to [3, 4], constitutive relations of surface and bulk elasticity theory, in the
case of the plane strain, are defined as

τ = (λs + 2µs)ε
s
tt, σnt = 2µεnt, (4)

σnn = (λ+ 2µ)εnn + λεtt, σtt = (λ+ 2µ)εtt + λεnn. (5)

In equations (4) and (5), σij is the stress tensor component,εstt and εij are the compo-
nents of the surface and bulk strain tensors, λ, µ (λs, µs) are Lame constants of the bulk
(surface) material.

From the continuity condition of the displacement, passing from two domains to the
interface Γ, we obtain the inseparability condition of the surface and the bulk (see [9, 15,
18]), expressed in terms of hoop strains:

lim
z→ζ

εktt(z) = εstt(z), k = 1, 2.
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3 INTEGRAL EQUATION OF N-ORDER APPROXIMATION

According to [15, 19], the relation of the stresses and the displacements with complex
potentials Φk(z) and Ψk(z) can be written as

G(z, ηk) = ηkΦk(z) + Φk(z) +
[
zΦk(z) + Ψk(z)

] dz̄
dz

,

where z is the point anywhere in the domains.
It is important to note that

G(z, ηk) =

{
σn, ηk = 1,

−2µk
du

dz
, ηk = −κk,

where κk = (3 − νk)/(1 + νk) for the plane stress state and κk = 3 − 4νk for the plane
strain; dz = |dz|eiα, dz̄ = dz, α is the angle between the direction t of the area and the
x1 axis. Functions Φk(z) and Ψk(z) are holomorphic in the corresponding domains Bk for
the first problem and Ωk for the second problem.

Following the BPM [8, 9, 15], the complex potentials Φk(z), Ψk(z) and the interfacial
stress τ are sought in terms of power series in a small parameter εk, k = 1, 2. The problem
is reduced to the solution of two independent Riemann –Hilbert’s boundary problems [8].
With the help of Goursat –Kolosov complex potentials, Muskhelishvili’s representations
[20], the BPM and simplified Gurtin –Murdoch surface elasticity theory, the solution of
the first type of the problem leads to the successive solution of hypersingular integral
equation in the unknown functions τn, n = 0, 1, . . . [9]

τ ′n(x1)−
M(κ + 1)

2π

∞∫

−∞

τ ′n(t)

(t− x1)2
dt = Fn(x1), (6)

and the solution of the second type of the problem leads to the similar equation

[2a−M(κ − 1)] τn(η) +
M(κ + 1)

2πi

∫

|ξ|=1

(ξ + η2/ξ)τn(ξ)

(ξ − η)2
dξ = Gn(η), |η| = 1, (7)

where M = (λs+2µs)/2µ; κ = (λ+3µ)/(λ+µ); functions Fn, Gn depend on all previous
solutions.

4 NUMERICAL RESULTS

The elastic properties are defined by Lame constants λ1 = 58, 17 GPa, µ1 = 26, 13 GPa
for the bulk domains B1 and Ω1 and M = M1 = 0, 117 nm when λs = 6, 851 N/m and
µs = −0, 376 N/m for the interface domain [5, 21]. In this study, we assume elastic
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properties of the bulk domain B2 (Ω2) are related with those for B1 (Ω1) as follows:
m = µ2/µ1 = 1/3, where m is stiffness ratio. Poisson’s ratio ν1 = ν2 = 0, 34.

We have verified our numerical results taken from the above first-order approximation
by comparing with those of finite element calculations within ANSYS program. The fi-
nite element models for two types of considered problems are shown in Fig. 3 and Fig. 4.
Following [6], the bulk and the interface layers are considered as different phases with dif-
ferent elastic properties. The model is built of high-order 2-D 6-node triangular elements
”plane183” with an intensively-refined mesh near the interface region that allows us to
approximate the interface between two phases with high accuracy. The interface region
is meshing by 1-D 2-node elements ”link180” with unitary cross-section area.

a b

Figure 3: Finite element models of elastic bimaterial composites with the nanometer interface relief that
arises between two different bulk phases (one perturbation (a)) and between the nearly circular inclusion
and the matrix (quarter of solid (b)) when ε1 = ε2 = 0, 1.

Owing to the periodicity of the interface profile for the first problem, it is enough
to consider only 5 perturbation periods in the numerical calculation (Fig. 3a). On the
symmetry plane (x = 0) the displacement ux is assumed to be zero. The right boundary
of the domain B1 is subjected to a constant load σ1. Since we assume that the upper half-
plane B2 and lower half-plane B1 are coherent, the load σ2 = σ1m is applied on the right
boundary of the domain B2. The interface is considered as domain with elastic properties
which differ from those for both bulk phases B1 and B2. Using FEM and BPM we studied
effect of interfacial stress on the stress-strain state of the bimaterial composite. Fig. 5a
reveals the stress concentration factor (SCF) S1

a = σ1
tt/σ1 as a function of perturbation

wavelength a for ε1 = 0, 1 and m = 1/3. The dotted line is plotted for M = M1 using the
first-order approximation of BPM. FEM calculations of SCF S1

n for different wavelength
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a b
Figure 4: The stress state of the considered problems when ε1 = ε2 = 0, 1.

a and M = M1 are marked by crosses. It is shown that both solutions comes to constant
values with increase of a. Dashed line correspond to the classical solution (M = 0) in the
case surface elasticity is neglected.

For the second problem, we investigate the stress field plane containing the nearly
circular nanoinclusion with the interface relief described by the function f(θ) = cos 2θ
(Fig. 2). Using simplified Gurtin –Murdoch surface elasticity theory and BPM [15], the
solution for this problem is reduced to the singular integro-differential equation for any-
order approximation (7). For the inclusion described by the cosine function when ε2 = 0, 1
and r = 2 nm, in the first-order approximation SCF S1

a = maxσ1
tt/σ

∞
22 is equal 1,77 and

S2
a = max σ2

tt/σ
∞
22 is equal 0,72, here σk

tt is hoop stress in the matrix (k = 1) and in the
inclusion (k = 2). Fig. 5b reveals the SCF Sk

a , k = 1, 2 (θ = 0) along the boundary of
almost circular nanoinclusion for the matrix k = 1 (blue lines) and for the inclusion k = 2
(red lines) upon the radius r in the case of the uniaxial tension σ∞

22 along axis x2, i. e.,
for σ∞

11 = σ∞
12 = 0, σ∞

22 > 0 when ε2 = 0, 1 and m = 1/3. The dotted lines are plotted
for M = M1 using the first-order approximation of BPM. FEM calculations of SCF Sk

n,
k = 1, 2 when M = M1 are marked by crosses. The stress field near the nanoinclusion
under the uniaxial tension is shown in Fig. 4b. Dashed lines also correspond to the
classical solution when M = 0.

5 CONCLUSIONS

We have analyzed the mathematical models of the nanopatterned interphases region
of two coherently bonded elastic solids and an elastic body with a nearly circular nanoin-
clusion. In particular:
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a b
Figure 5: Dependence of the SCF S on the wavelength of perturbation a for the first problem (a) and
on the inclusion versus radius of the corresponding circular nanoinclusion r for the second problem (b).

• Analytical solutions of considered problems in any-order approximation of BPM is
obtained. The effect of interfacial stress on stress-strain state of bimaterial com-
posites near the interface is investigated using first-order approximation. As it was
shown, with the increase of the wavelength perturbation a and the radius r of the
basic circular inclusion, the maximum hoop stresses at the interface tends to the
classical solution when the interfacial stress is not considered. However, with the
decrease of the wavelength perturbation a and the radius r, the SCF decreases in-
definitely when M = M1. This fact illustrates the size effect as a dependence of the
stress state on the size of the interface boundary topological defects.

• To verify the obtained analytical solutions, the considered problems were also solved
using FEM. Analytical results for smooth undulated surface when ε1 = ε2 = 0, 1
are in a good agreement with FEM calculations. The relative differences between
solutions obtained by the describes approaches less than 10% for the first problem
and does not exceed 16% for the second problem. Moreover, this results confirmed
the previous studies. By increasing the size parameters of the interface boundaries,
we came to the solutions obtained in the studies [8, 18], where interface elastic
properties was neglected. However, as the small parameter increases, the relative
difference between FEM and first-order BPM solutions increase [22, 23]. As a result,
it’s important to take into account the nonlinear terms of the perturbation solution.
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