Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Integro-differential equations of the convolution on a finite interval with kernel having a logarithmic singularity. / Andronov, I. V.
в: Journal of Mathematical Sciences , Том 79, № 4, 01.01.1996, стр. 1161-1165.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Integro-differential equations of the convolution on a finite interval with kernel having a logarithmic singularity
AU - Andronov, I. V.
PY - 1996/1/1
Y1 - 1996/1/1
N2 - The integro-differential equations d2n/dx2n ∫-1 1 (a[(x - t)2] ln |x - t| + b[(x - t)2])φ(t)dt = f(x) of the convolution on an interval with infinitely differentiable functions a(s) and b(s) decreasing at infinity are considered. The Fourier symbol is assumed to be sectorial, that is, it has positive projection on some direction in the complex plane. The existence and uniqueness of solutions in the classes of functions representable in the form φ(t) = (1 - t2)δn φ(t), δn = n - 1 + ε, ε < 0, φ ∈ C1 [-1, 1] are proved. Properties concerning the smoothness of solutions are described.
AB - The integro-differential equations d2n/dx2n ∫-1 1 (a[(x - t)2] ln |x - t| + b[(x - t)2])φ(t)dt = f(x) of the convolution on an interval with infinitely differentiable functions a(s) and b(s) decreasing at infinity are considered. The Fourier symbol is assumed to be sectorial, that is, it has positive projection on some direction in the complex plane. The existence and uniqueness of solutions in the classes of functions representable in the form φ(t) = (1 - t2)δn φ(t), δn = n - 1 + ε, ε < 0, φ ∈ C1 [-1, 1] are proved. Properties concerning the smoothness of solutions are described.
UR - http://www.scopus.com/inward/record.url?scp=53349118858&partnerID=8YFLogxK
U2 - 10.1007/BF02362880
DO - 10.1007/BF02362880
M3 - Article
AN - SCOPUS:53349118858
VL - 79
SP - 1161
EP - 1165
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 4
ER -
ID: 39983209