Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The integro-differential equations d2n/dx2n ∫-1 1 (a[(x - t)2] ln |x - t| + b[(x - t)2])φ(t)dt = f(x) of the convolution on an interval with infinitely differentiable functions a(s) and b(s) decreasing at infinity are considered. The Fourier symbol is assumed to be sectorial, that is, it has positive projection on some direction in the complex plane. The existence and uniqueness of solutions in the classes of functions representable in the form φ(t) = (1 - t2)δn φ(t), δn = n - 1 + ε, ε < 0, φ ∈ C1 [-1, 1] are proved. Properties concerning the smoothness of solutions are described.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1161-1165 |
Число страниц | 5 |
Журнал | Journal of Mathematical Sciences |
Том | 79 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 1 янв 1996 |
ID: 39983209