Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Integrable discretization and deformation of the nonholonomic Chaplygin ball. / Tsiganov, Andrey V.
в: Regular and Chaotic Dynamics, Том 22, № 4, 01.07.2017, стр. 353-367.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Integrable discretization and deformation of the nonholonomic Chaplygin ball
AU - Tsiganov, Andrey V.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
AB - The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
KW - Abel quadratures
KW - arithmetic of divisors
KW - nonholonomic systems
UR - http://www.scopus.com/inward/record.url?scp=85026852386&partnerID=8YFLogxK
U2 - 10.1134/S1560354717040025
DO - 10.1134/S1560354717040025
M3 - Article
AN - SCOPUS:85026852386
VL - 22
SP - 353
EP - 367
JO - Regular and Chaotic Dynamics
JF - Regular and Chaotic Dynamics
SN - 1560-3547
IS - 4
ER -
ID: 8432959