The traditional predictor of technical inefficiency proposed by Jondrow, Lovell, Materov, and Schmidt (1982) is a conditional expectation. This chapter explores whether, and by how much, the predictor can be improved by using auxiliary information in the conditioning set. It considers two types of stochastic frontier models. The first type is a panel data model where composed errors from past and future time periods contain information about contemporaneous technical inefficiency. The second type is when the stochastic frontier model is augmented by input ratio equations in which allocative inefficiency is correlated with technical inefficiency. Compared to the standard kernel-smoothing estimator, a newer estimator based on a local linear random forest helps mitigate the curse of dimensionality when the conditioning set is large. Besides numerous simulations, there is an illustrative empirical example.
Язык оригиналаанглийский
Название основной публикацииEssays in Honor of Subal Kumbhakar
ИздательEmerald Group Publishing Ltd.
Страницы309-328
Число страниц20
ISBN (электронное издание)978-1-83797-873-1
ISBN (печатное издание)978-1-83797-874-8
DOI
СостояниеОпубликовано - 5 апр 2024

Серия публикаций

НазваниеAdvances in Econometrics
Том46

ID: 128545268