Standard

Fractional operators as traces of operator-valued curves. / Musina, Roberta; Назаров, Александр Ильич.

в: Journal of Functional Analysis, Том 287, № 2, 110443, 01.07.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Musina, R & Назаров, АИ 2024, 'Fractional operators as traces of operator-valued curves', Journal of Functional Analysis, Том. 287, № 2, 110443. https://doi.org/10.1016/j.jfa.2024.110443

APA

Vancouver

Author

Musina, Roberta ; Назаров, Александр Ильич. / Fractional operators as traces of operator-valued curves. в: Journal of Functional Analysis. 2024 ; Том 287, № 2.

BibTeX

@article{7ec094ece6334aef80295cbb7e59637b,
title = "Fractional operators as traces of operator-valued curves",
abstract = "We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characterization of fractional powers of differential operators via an extension problem.",
keywords = "Higher order fractional operators, Operator-valued functions",
author = "Roberta Musina and Назаров, {Александр Ильич}",
year = "2024",
month = jul,
day = "1",
doi = "10.1016/j.jfa.2024.110443",
language = "English",
volume = "287",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Elsevier",
number = "2",

}

RIS

TY - JOUR

T1 - Fractional operators as traces of operator-valued curves

AU - Musina, Roberta

AU - Назаров, Александр Ильич

PY - 2024/7/1

Y1 - 2024/7/1

N2 - We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characterization of fractional powers of differential operators via an extension problem.

AB - We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characterization of fractional powers of differential operators via an extension problem.

KW - Higher order fractional operators

KW - Operator-valued functions

UR - https://www.mendeley.com/catalogue/4adff206-3829-36c7-9d91-db4bb15f1708/

U2 - 10.1016/j.jfa.2024.110443

DO - 10.1016/j.jfa.2024.110443

M3 - Article

VL - 287

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 2

M1 - 110443

ER -

ID: 126951602