We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characterization of fractional powers of differential operators via an extension problem.
Язык оригиналаанглийский
Номер статьи110443
ЖурналJournal of Functional Analysis
Том287
Номер выпуска2
DOI
СостояниеОпубликовано - 1 июл 2024

ID: 126951602