Standard

Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides. / Nazarov, S.A.

в: Doklady Physics, Том 63, № 7, 01.07.2018, стр. 307-311.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{997af8f600c245738f8ceb2660235f68,
title = "Finite-Dimensional Approximations of the Steklov–Poincar{\'e} Operator in Periodic Elastic Waveguides",
abstract = "Abstract: For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincar{\'e} operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.",
author = "S.A. Nazarov",
year = "2018",
month = jul,
day = "1",
doi = "10.1134/S1028335818070108",
language = "English",
volume = "63",
pages = "307--311",
journal = "Doklady Physics",
issn = "1028-3358",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "7",

}

RIS

TY - JOUR

T1 - Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides

AU - Nazarov, S.A.

PY - 2018/7/1

Y1 - 2018/7/1

N2 - Abstract: For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.

AB - Abstract: For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.

UR - http://www.scopus.com/inward/record.url?scp=85051445729&partnerID=8YFLogxK

U2 - 10.1134/S1028335818070108

DO - 10.1134/S1028335818070108

M3 - Article

VL - 63

SP - 307

EP - 311

JO - Doklady Physics

JF - Doklady Physics

SN - 1028-3358

IS - 7

ER -

ID: 35209090