• A. S. Starostin
  • V. V. Bocharov
  • S. V. Alexeeva
  • A. A. Bodrova
  • A. S. Chuchunkov
  • S. S. Dzhumaev
  • I. V. Efimenko
  • D. V. Granovsky
  • V. F. Khoroshevsky
  • I. V. Krylova
  • M. A. Nikolaeva
  • I. M. Smurov
  • S. Y. Toldova

In this paper, we describe the rules and results of the FactRuEval information extraction competition held in 2016 as part of the Dialogue Evaluation initiative in the run-up to Dialogue 2016. The systems were to extract information from Russian texts and competed in two named entity extraction tracks and one fact extraction track. The paper describes the tasks set before the participants and presents the scores achieved by the contending systems. Additionally, we dwell upon the scoring methods employed for evaluating the results of all the three tracks and provide some preliminary analysis of the state of the art in Information Extraction for Russian texts. We also provide a detailed description of the composition and general organization of the annotated corpus created for the competition by volunteers using the OpenCorpora.org platform. The corpus is publicly available and is expected to evolve in the future.

Язык оригиналаанглийский
Название основной публикацииFactRuEval 2016: Evaluation of Named Entity Recognition and Fact Extraction Systems for Russian
Страницы702-720
Число страниц19
СостояниеОпубликовано - 2016
Событие2016 International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2016 - Moscow, Российская Федерация
Продолжительность: 1 июн 20164 июн 2016

Серия публикаций

НазваниеKomp'juternaja Lingvistika i Intellektual'nye Tehnologii
ИздательРоссийский государственный гуманитарный университет
ISSN (печатное издание)2221-7932

конференция

конференция2016 International Conference on Computational Linguistics and Intellectual Technologies, Dialogue 2016
Страна/TерриторияРоссийская Федерация
ГородMoscow
Период1/06/164/06/16

    Предметные области Scopus

  • Языки и лингвистика
  • Языки и лингвистика
  • Прикладные компьютерные науки

ID: 7569428