Standard

Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. / Hirahara, T.; Otrokov, M. M. ; Sasaki, T.; Sumida, K.; Tomohiro, Y.; Kusaka, S.; Okuyama, Y.; Ichinokura, S.; Kobayashi, M.; Takeda, Y.; Amemiya, K.; Shirasawa, T.; Ideta, S.; Miyamoto, K.; Tanaka, K.; Kuroda, S.; Okuda, T.; Hono, K.; Eremeev, S. V. ; Chulkov, E. V. .

в: Nature Communications, Том 11, № 1, 4821, 01.12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Hirahara, T, Otrokov, MM, Sasaki, T, Sumida, K, Tomohiro, Y, Kusaka, S, Okuyama, Y, Ichinokura, S, Kobayashi, M, Takeda, Y, Amemiya, K, Shirasawa, T, Ideta, S, Miyamoto, K, Tanaka, K, Kuroda, S, Okuda, T, Hono, K, Eremeev, SV & Chulkov, EV 2020, 'Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone', Nature Communications, Том. 11, № 1, 4821. https://doi.org/10.1038/s41467-020-18645-9

APA

Hirahara, T., Otrokov, M. M., Sasaki, T., Sumida, K., Tomohiro, Y., Kusaka, S., Okuyama, Y., Ichinokura, S., Kobayashi, M., Takeda, Y., Amemiya, K., Shirasawa, T., Ideta, S., Miyamoto, K., Tanaka, K., Kuroda, S., Okuda, T., Hono, K., Eremeev, S. V., & Chulkov, E. V. (2020). Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nature Communications, 11(1), [4821]. https://doi.org/10.1038/s41467-020-18645-9

Vancouver

Hirahara T, Otrokov MM, Sasaki T, Sumida K, Tomohiro Y, Kusaka S и пр. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nature Communications. 2020 Дек. 1;11(1). 4821. https://doi.org/10.1038/s41467-020-18645-9

Author

Hirahara, T. ; Otrokov, M. M. ; Sasaki, T. ; Sumida, K. ; Tomohiro, Y. ; Kusaka, S. ; Okuyama, Y. ; Ichinokura, S. ; Kobayashi, M. ; Takeda, Y. ; Amemiya, K. ; Shirasawa, T. ; Ideta, S. ; Miyamoto, K. ; Tanaka, K. ; Kuroda, S. ; Okuda, T. ; Hono, K. ; Eremeev, S. V. ; Chulkov, E. V. . / Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. в: Nature Communications. 2020 ; Том 11, № 1.

BibTeX

@article{9ea091b0b3e549b7b5958093bf46ce72,
title = "Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone",
abstract = "Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.",
keywords = "Ferromagnetism, Surfaces, interfaces and thin films, topological insulators",
author = "T. Hirahara and Otrokov, {M. M.} and T. Sasaki and K. Sumida and Y. Tomohiro and S. Kusaka and Y. Okuyama and S. Ichinokura and M. Kobayashi and Y. Takeda and K. Amemiya and T. Shirasawa and S. Ideta and K. Miyamoto and K. Tanaka and S. Kuroda and T. Okuda and K. Hono and Eremeev, {S. V.} and Chulkov, {E. V.}",
note = "Publisher Copyright: {\textcopyright} 2020, The Author(s).",
year = "2020",
month = dec,
day = "1",
doi = "10.1038/s41467-020-18645-9",
language = "English",
volume = "11",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone

AU - Hirahara, T.

AU - Otrokov, M. M.

AU - Sasaki, T.

AU - Sumida, K.

AU - Tomohiro, Y.

AU - Kusaka, S.

AU - Okuyama, Y.

AU - Ichinokura, S.

AU - Kobayashi, M.

AU - Takeda, Y.

AU - Amemiya, K.

AU - Shirasawa, T.

AU - Ideta, S.

AU - Miyamoto, K.

AU - Tanaka, K.

AU - Kuroda, S.

AU - Okuda, T.

AU - Hono, K.

AU - Eremeev, S. V.

AU - Chulkov, E. V.

N1 - Publisher Copyright: © 2020, The Author(s).

PY - 2020/12/1

Y1 - 2020/12/1

N2 - Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.

AB - Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.

KW - Ferromagnetism

KW - Surfaces, interfaces and thin films

KW - topological insulators

UR - http://www.scopus.com/inward/record.url?scp=85091428129&partnerID=8YFLogxK

U2 - 10.1038/s41467-020-18645-9

DO - 10.1038/s41467-020-18645-9

M3 - Article

VL - 11

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 4821

ER -

ID: 70635915