Research output: Contribution to journal › Article › peer-review
Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. / Hirahara, T.; Otrokov, M. M. ; Sasaki, T.; Sumida, K.; Tomohiro, Y.; Kusaka, S.; Okuyama, Y.; Ichinokura, S.; Kobayashi, M.; Takeda, Y.; Amemiya, K.; Shirasawa, T.; Ideta, S.; Miyamoto, K.; Tanaka, K.; Kuroda, S.; Okuda, T.; Hono, K.; Eremeev, S. V. ; Chulkov, E. V. .
In: Nature Communications, Vol. 11, No. 1, 4821, 01.12.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone
AU - Hirahara, T.
AU - Otrokov, M. M.
AU - Sasaki, T.
AU - Sumida, K.
AU - Tomohiro, Y.
AU - Kusaka, S.
AU - Okuyama, Y.
AU - Ichinokura, S.
AU - Kobayashi, M.
AU - Takeda, Y.
AU - Amemiya, K.
AU - Shirasawa, T.
AU - Ideta, S.
AU - Miyamoto, K.
AU - Tanaka, K.
AU - Kuroda, S.
AU - Okuda, T.
AU - Hono, K.
AU - Eremeev, S. V.
AU - Chulkov, E. V.
N1 - Publisher Copyright: © 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.
AB - Materials that possess nontrivial topology and magnetism is known to exhibit exotic quantum phenomena such as the quantum anomalous Hall effect. Here, we fabricate a novel magnetic topological heterostructure Mn4Bi2Te7/Bi2Te3 where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi2Te3. A massive Dirac cone (DC) with a gap of 40–75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200–250 K. Structural analysis shows that the samples also contain MnBi2Te4/Bi2Te3. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi2Te4/Bi2Te3 is paramagnetic at 6 K while Mn4Bi2Te7/Bi2Te3 is ferromagnetic with a negative hysteresis (critical temperature ~20 K). This novel heterostructure is potentially important for future device applications.
KW - Ferromagnetism
KW - Surfaces, interfaces and thin films
KW - topological insulators
UR - http://www.scopus.com/inward/record.url?scp=85091428129&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-18645-9
DO - 10.1038/s41467-020-18645-9
M3 - Article
VL - 11
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 4821
ER -
ID: 70635915