Standard

Explicit form of the Hilbert symbol for polynomial formal groups. / Vostokov, S.; Volkov, V.

в: St. Petersburg Mathematical Journal, Том 26, № 5, 2015, стр. 785-796.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vostokov, S & Volkov, V 2015, 'Explicit form of the Hilbert symbol for polynomial formal groups', St. Petersburg Mathematical Journal, Том. 26, № 5, стр. 785-796. https://doi.org/10.1090/spmj/1358

APA

Vostokov, S., & Volkov, V. (2015). Explicit form of the Hilbert symbol for polynomial formal groups. St. Petersburg Mathematical Journal, 26(5), 785-796. https://doi.org/10.1090/spmj/1358

Vancouver

Author

Vostokov, S. ; Volkov, V. / Explicit form of the Hilbert symbol for polynomial formal groups. в: St. Petersburg Mathematical Journal. 2015 ; Том 26, № 5. стр. 785-796.

BibTeX

@article{c5178c78864442159fcd16a14cd0b957,
title = "Explicit form of the Hilbert symbol for polynomial formal groups",
abstract = "{\textcopyright} 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.",
author = "S. Vostokov and V. Volkov",
year = "2015",
doi = "10.1090/spmj/1358",
language = "English",
volume = "26",
pages = "785--796",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Explicit form of the Hilbert symbol for polynomial formal groups

AU - Vostokov, S.

AU - Volkov, V.

PY - 2015

Y1 - 2015

N2 - © 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.

AB - © 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.

U2 - 10.1090/spmj/1358

DO - 10.1090/spmj/1358

M3 - Article

VL - 26

SP - 785

EP - 796

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 5

ER -

ID: 3986838