Research output: Contribution to journal › Article › peer-review
Explicit form of the Hilbert symbol for polynomial formal groups. / Vostokov, S.; Volkov, V.
In: St. Petersburg Mathematical Journal, Vol. 26, No. 5, 2015, p. 785-796.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Explicit form of the Hilbert symbol for polynomial formal groups
AU - Vostokov, S.
AU - Volkov, V.
PY - 2015
Y1 - 2015
N2 - © 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.
AB - © 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.
U2 - 10.1090/spmj/1358
DO - 10.1090/spmj/1358
M3 - Article
VL - 26
SP - 785
EP - 796
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 5
ER -
ID: 3986838