DOI

We study the fragmentation-coagulation, or merging and splitting, model as introduced in Kolokoltsov (Math Oper Res, 2016, in press, doi:10.1287/moor.2016.0838), where N small players can form coalitions to resist to the pressure exerted by the principal. It is a Markov chain in continuous time, and the players have a common reward to optimize. We study the behavior as N grows and show that the problem converges to a (one player) deterministic optimization problem in continuous time, in the infinite dimensional state space l1. We apply the method developed in Gast et al. (IEEE Trans Autom Control 57:2266–2280, 2012), adapting it to our different framework. We use tools involving dynamics in l1, generators of Markov processes, martingale problems, and coupling of Markov chains.

Язык оригиналаанглийский
Название основной публикацииAnnals of the International Society of Dynamic Games
ИздательBirkhäuser Verlag AG
Страницы71-106
Число страниц36
DOI
СостояниеОпубликовано - 1 янв 2017

Серия публикаций

НазваниеAnnals of the International Society of Dynamic Games
Том15
ISSN (печатное издание)2474-0179
ISSN (электронное издание)2474-0187

    Предметные области Scopus

  • Теория вероятности и статистика
  • Статистика, теория вероятности и теория неопределенности
  • Прикладная математика

ID: 51530490