Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach. / Judge, E.; Naboko, S.; Wood, I.
в: Journal of Difference Equations and Applications, Том 24, № 8, 03.08.2018, стр. 1247-1272.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach
AU - Judge, E.
AU - Naboko, S.
AU - Wood, I.
PY - 2018/8/3
Y1 - 2018/8/3
N2 - We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schrödinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.
AB - We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schrödinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.
KW - embedded eigenvalues
KW - Jacobi matrices
KW - periodic operators
KW - spectral theory
KW - Wigner-von Neumann
KW - HETEROSTRUCTURES
KW - SUBORDINACY
KW - POTENTIALS
KW - BOUND-STATES
KW - MATRICES
KW - CONTINUUM
KW - SPECTRUM
KW - SCHRODINGER-OPERATORS
UR - http://www.scopus.com/inward/record.url?scp=85046636373&partnerID=8YFLogxK
U2 - 10.1080/10236198.2018.1468890
DO - 10.1080/10236198.2018.1468890
M3 - Article
AN - SCOPUS:85046636373
VL - 24
SP - 1247
EP - 1272
JO - Journal of Difference Equations and Applications
JF - Journal of Difference Equations and Applications
SN - 1023-6198
IS - 8
ER -
ID: 36461944