DOI

We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schrödinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.

Язык оригиналаанглийский
Страницы (с-по)1247-1272
ЖурналJournal of Difference Equations and Applications
Том24
Номер выпуска8
Дата раннего онлайн-доступа9 мая 2018
DOI
СостояниеОпубликовано - 3 авг 2018

    Предметные области Scopus

  • Анализ
  • Прикладная математика
  • Алгебра и теория чисел

ID: 36461944