This paper presents an adaptive state observer for a nonlinear induction motor model that accounts for viscous friction. The problem is solved using a modified version of the Dynamic Regressor Extension and Mixing (DREMBAO) method. The main idea is to reduce the original model to a regression-like model, where the vector of unknowns contains unknown parameters and state variables. After this step, it becomes possible to obtain a set of scalar linear equations with respect to the unknown state variables and parameters. Using these equations, parameters are estimated with gradient descent estimator, and state estimation is obtained using the gradient observer. Simulation results of an adaptive observer are presented, which demonstrate the effectiveness of the proposed approach. © 2024 IEEE.
Язык оригиналаАнглийский
Страницы2711-2714
Число страниц4
DOI
СостояниеОпубликовано - 1 июл 2024
Событие10th International Conference on Control, Decision and Information Technologies - Valletta, Мальта
Продолжительность: 1 июл 20244 июл 2024

конференция

конференция10th International Conference on Control, Decision and Information Technologies
Сокращенное названиеCoDIT 2024
Страна/TерриторияМальта
ГородValletta
Период1/07/244/07/24

ID: 127409031