Результаты исследований: Материалы конференций › материалы › Рецензирование
DREM-based Adaptive Observer for Induction Motor Model With Friction. / Bespalov, V.; Vedyakov, A.; Vediakova, A.
2024. 2711-2714 Работа представлена на 10th International Conference on Control, Decision and Information Technologies, Valletta, Мальта.Результаты исследований: Материалы конференций › материалы › Рецензирование
}
TY - CONF
T1 - DREM-based Adaptive Observer for Induction Motor Model With Friction
AU - Bespalov, V.
AU - Vedyakov, A.
AU - Vediakova, A.
N1 - Код конференции: 203436 Export Date: 18 November 2024 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka, 2019-0898 Сведения о финансировании: Ministry of Education and Science of the Russian Federation, Minobrnauka Текст о финансировании 1: This work was supported by the Ministry of Science and Higher Education of Russian Federation, passport of goszadanie no. 2019-0898.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - This paper presents an adaptive state observer for a nonlinear induction motor model that accounts for viscous friction. The problem is solved using a modified version of the Dynamic Regressor Extension and Mixing (DREMBAO) method. The main idea is to reduce the original model to a regression-like model, where the vector of unknowns contains unknown parameters and state variables. After this step, it becomes possible to obtain a set of scalar linear equations with respect to the unknown state variables and parameters. Using these equations, parameters are estimated with gradient descent estimator, and state estimation is obtained using the gradient observer. Simulation results of an adaptive observer are presented, which demonstrate the effectiveness of the proposed approach. © 2024 IEEE.
AB - This paper presents an adaptive state observer for a nonlinear induction motor model that accounts for viscous friction. The problem is solved using a modified version of the Dynamic Regressor Extension and Mixing (DREMBAO) method. The main idea is to reduce the original model to a regression-like model, where the vector of unknowns contains unknown parameters and state variables. After this step, it becomes possible to obtain a set of scalar linear equations with respect to the unknown state variables and parameters. Using these equations, parameters are estimated with gradient descent estimator, and state estimation is obtained using the gradient observer. Simulation results of an adaptive observer are presented, which demonstrate the effectiveness of the proposed approach. © 2024 IEEE.
KW - Equations of state
KW - Friction
KW - Regression analysis
KW - Adaptive observer
KW - Adaptive state observer
KW - Equation parameter
KW - Induction motor modeling
KW - Original model
KW - Parameter variable
KW - State parameters
KW - State-variables
KW - Unknown state
KW - Viscous friction
KW - State estimation
U2 - 10.1109/codit62066.2024.10708471
DO - 10.1109/codit62066.2024.10708471
M3 - материалы
SP - 2711
EP - 2714
Y2 - 1 July 2024 through 4 July 2024
ER -
ID: 127409031