Standard

Degenerations of Filippov algebras. / Kaygorodov, Ivan; Volkov, Yury.

в: Journal of Mathematical Physics, Том 61, № 2, 021701, 01.02.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kaygorodov, I & Volkov, Y 2020, 'Degenerations of Filippov algebras', Journal of Mathematical Physics, Том. 61, № 2, 021701. https://doi.org/10.1063/1.5119393

APA

Kaygorodov, I., & Volkov, Y. (2020). Degenerations of Filippov algebras. Journal of Mathematical Physics, 61(2), [021701]. https://doi.org/10.1063/1.5119393

Vancouver

Kaygorodov I, Volkov Y. Degenerations of Filippov algebras. Journal of Mathematical Physics. 2020 Февр. 1;61(2). 021701. https://doi.org/10.1063/1.5119393

Author

Kaygorodov, Ivan ; Volkov, Yury. / Degenerations of Filippov algebras. в: Journal of Mathematical Physics. 2020 ; Том 61, № 2.

BibTeX

@article{40791e04f9f24b1ab79e6b1399166310,
title = "Degenerations of Filippov algebras",
abstract = "We consider the variety of Filippov (n-Lie) algebra structures on an (n + 1)-dimensional vector space. The group GLn(K) acts on it, and we study the orbit closures with respect to the Zariski topology. This leads to the definition of Filippov algebra degenerations. We present some fundamental results on such degenerations, including trace invariants and necessary degeneration criteria. Finally, we classify all orbit closures in the variety of complex (n + 1)-dimensional Filippov n-ary algebras.",
keywords = "LIE-ALGEBRAS, GRADED CONTRACTIONS, CLASSIFICATION, DEFORMATIONS",
author = "Ivan Kaygorodov and Yury Volkov",
note = "Publisher Copyright: {\textcopyright} 2020 Author(s).",
year = "2020",
month = feb,
day = "1",
doi = "10.1063/1.5119393",
language = "English",
volume = "61",
journal = "Journal of Mathematical Physics",
issn = "0022-2488",
publisher = "American Institute of Physics",
number = "2",

}

RIS

TY - JOUR

T1 - Degenerations of Filippov algebras

AU - Kaygorodov, Ivan

AU - Volkov, Yury

N1 - Publisher Copyright: © 2020 Author(s).

PY - 2020/2/1

Y1 - 2020/2/1

N2 - We consider the variety of Filippov (n-Lie) algebra structures on an (n + 1)-dimensional vector space. The group GLn(K) acts on it, and we study the orbit closures with respect to the Zariski topology. This leads to the definition of Filippov algebra degenerations. We present some fundamental results on such degenerations, including trace invariants and necessary degeneration criteria. Finally, we classify all orbit closures in the variety of complex (n + 1)-dimensional Filippov n-ary algebras.

AB - We consider the variety of Filippov (n-Lie) algebra structures on an (n + 1)-dimensional vector space. The group GLn(K) acts on it, and we study the orbit closures with respect to the Zariski topology. This leads to the definition of Filippov algebra degenerations. We present some fundamental results on such degenerations, including trace invariants and necessary degeneration criteria. Finally, we classify all orbit closures in the variety of complex (n + 1)-dimensional Filippov n-ary algebras.

KW - LIE-ALGEBRAS

KW - GRADED CONTRACTIONS

KW - CLASSIFICATION

KW - DEFORMATIONS

UR - http://www.scopus.com/inward/record.url?scp=85079244385&partnerID=8YFLogxK

U2 - 10.1063/1.5119393

DO - 10.1063/1.5119393

M3 - Article

AN - SCOPUS:85079244385

VL - 61

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 2

M1 - 021701

ER -

ID: 51654431