DOI

We consider the variety of Filippov (n-Lie) algebra structures on an (n + 1)-dimensional vector space. The group GLn(K) acts on it, and we study the orbit closures with respect to the Zariski topology. This leads to the definition of Filippov algebra degenerations. We present some fundamental results on such degenerations, including trace invariants and necessary degeneration criteria. Finally, we classify all orbit closures in the variety of complex (n + 1)-dimensional Filippov n-ary algebras.

Язык оригиналаанглийский
Номер статьи021701
Число страниц10
ЖурналJournal of Mathematical Physics
Том61
Номер выпуска2
DOI
СостояниеОпубликовано - 1 фев 2020

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 51654431