DOI

Celsian (BaAl2Si2O8) is an important component of aluminosilicate-based ceramics, which is widely used in high temperature/high pressure process. However, limited data available on its high pressure (HP)/high temperature (HT) behavior and HT studies were based on multi-component samples only. Here we present data on crystal structure stability and phase transformation processes of celsian studied under extreme conditions (up to ∼22 GPa/∼1110 °C) using in situ X-ray diffraction. Under HP conditions celsian undergoes three phase transitions: at the pressures below 10 GPa the main changes in the crystal structure of celsian associated with the changes in the coordination Ba-centered polyhedron (celsian-II and celsian-III), whereas at higher pressures AlO4 tetrahedra transforms into AlO6 octahedra (celsian-IV). Though the HP behavior of some isostructural compound has been studied before, the HP transformation of celsian is not similar to any previously studied mineral or synthetic compound. Celsian demonstrate stability and low thermal expansion coefficients (αV = 12 × 10−6 °C−1) in the studied temperature range.
Язык оригиналаанглийский
Страницы (с-по)54770-54777
Число страниц8
ЖурналCeramics International
Том50
Номер выпуска24
Дата раннего онлайн-доступа22 окт 2024
DOI
СостояниеОпубликовано - 15 дек 2024

    Области исследований

  • Silicate, Traditional ceramics, Thermal expansion, X-ray methods

ID: 126554892