Celsian (BaAl2Si2O8) is an important component of aluminosilicate-based ceramics, which is widely used in high temperature/high pressure process. However, limited data available on its high pressure (HP)/high temperature (HT) behavior and HT studies were based on multi-component samples only. Here we present data on crystal structure stability and phase transformation processes of celsian studied under extreme conditions (up to ∼22 GPa/∼1110 °C) using in situ X-ray diffraction. Under HP conditions celsian undergoes three phase transitions: at the pressures below 10 GPa the main changes in the crystal structure of celsian associated with the changes in the coordination Ba-centered polyhedron (celsian-II and celsian-III), whereas at higher pressures AlO4 tetrahedra transforms into AlO6 octahedra (celsian-IV). Though the HP behavior of some isostructural compound has been studied before, the HP transformation of celsian is not similar to any previously studied mineral or synthetic compound. Celsian demonstrate stability and low thermal expansion coefficients (αV = 12 × 10−6 °C−1) in the studied temperature range.
Original languageEnglish
Pages (from-to)54770-54777
Number of pages8
JournalCeramics International
Volume50
Issue number24
Early online date22 Oct 2024
DOIs
StatePublished - 15 Dec 2024

    Research areas

  • Silicate, Thermal expansion, Traditional ceramics, X-ray methods

ID: 126554892