Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
Convergence analysis of weighted SPSA-based consensus algorithm in distributed parameter estimation problem. / Sergeenko, Anna; Erofeeva, Victoria; Granichin, Oleg; Granichina, Olga; Proskurnikov, Anton.
в: IFAC-PapersOnLine, Том 54, № 7, 01.07.2021, стр. 126-131.Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
}
TY - JOUR
T1 - Convergence analysis of weighted SPSA-based consensus algorithm in distributed parameter estimation problem
AU - Sergeenko, Anna
AU - Erofeeva, Victoria
AU - Granichin, Oleg
AU - Granichina, Olga
AU - Proskurnikov, Anton
N1 - Publisher Copyright: © 2021 The Authors.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - In this paper, we study a distributed parameter estimation problem in a large-scale network of communication sensors. The goal of the sensors is to find a global estimate of an unknown parameter minimizing, which minimizes some aggregate cost function. Each sensor can communicated to a few “neighbors”, furthermore, the communication channels have limited capacities. To solve the resulting optimization problem, we use a weighted modification of the distributed consensus-based SPSA algorithm whose main advantage over the alternative method is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based consensus algorithm and show its efficiency via numerical simulations.
AB - In this paper, we study a distributed parameter estimation problem in a large-scale network of communication sensors. The goal of the sensors is to find a global estimate of an unknown parameter minimizing, which minimizes some aggregate cost function. Each sensor can communicated to a few “neighbors”, furthermore, the communication channels have limited capacities. To solve the resulting optimization problem, we use a weighted modification of the distributed consensus-based SPSA algorithm whose main advantage over the alternative method is its ability to work in presence of arbitrary unknown-but-bounded noises whose statistical characteristics can be unknown. We provide a convergence analysis of the weighted SPSA-based consensus algorithm and show its efficiency via numerical simulations.
KW - Consensus
KW - Distributed parameter estimation
KW - Randomized algorithms
KW - Sensor network
UR - http://www.scopus.com/inward/record.url?scp=85118141649&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/c25e10dd-9d13-31b0-a56f-593dc42a0aef/
U2 - 10.1016/j.ifacol.2021.08.346
DO - 10.1016/j.ifacol.2021.08.346
M3 - Conference article
AN - SCOPUS:85118141649
VL - 54
SP - 126
EP - 131
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
SN - 2405-8971
IS - 7
T2 - 19th IFAC Symposium on System Identification, SYSID 2021
Y2 - 13 July 2021 through 16 July 2021
ER -
ID: 88777087