Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates. / Kulikov, Alexander S.; Podolskii, Vladimir V.
в: Theory of Computing Systems, Том 63, № 5, 07.2019, стр. 956-986.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates
AU - Kulikov, Alexander S.
AU - Podolskii, Vladimir V.
N1 - Kulikov, A.S. & Podolskii, V.V. Theory Comput Syst (2019) 63: 956. https://doi.org/10.1007/s00224-018-9900-3
PY - 2019/7
Y1 - 2019/7
N2 - We study the following computational problem: for which values of k, the majority of n bits MAJn can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk ∘ MAJk. We observe that the minimum value of k for which there exists a MAJk ∘ MAJk circuit that has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a randomized MAJk ∘ MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n2/3 + o(1). We show a worst case lower bound: if a MAJk ∘ MAJk circuit computes the majority of n bits correctly on all inputs, then k ≥ n13/19 + o(1).
AB - We study the following computational problem: for which values of k, the majority of n bits MAJn can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk ∘ MAJk. We observe that the minimum value of k for which there exists a MAJk ∘ MAJk circuit that has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a randomized MAJk ∘ MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n2/3 + o(1). We show a worst case lower bound: if a MAJk ∘ MAJk circuit computes the majority of n bits correctly on all inputs, then k ≥ n13/19 + o(1).
KW - Average case
KW - Circuit complexity
KW - Constant depth
KW - Correlation
KW - Majority
KW - Threshold
KW - Worst case
UR - http://www.scopus.com/inward/record.url?scp=85057615793&partnerID=8YFLogxK
U2 - 10.1007/s00224-018-9900-3
DO - 10.1007/s00224-018-9900-3
M3 - Article
AN - SCOPUS:85057615793
VL - 63
SP - 956
EP - 986
JO - Theory of Computing Systems
JF - Theory of Computing Systems
SN - 1432-4350
IS - 5
ER -
ID: 49820484