Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study the following computational problem: for which values of k, the majority of n bits MAJn can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk ∘ MAJk. We observe that the minimum value of k for which there exists a MAJk ∘ MAJk circuit that has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a randomized MAJk ∘ MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n2/3 + o(1). We show a worst case lower bound: if a MAJk ∘ MAJk circuit computes the majority of n bits correctly on all inputs, then k ≥ n13/19 + o(1).
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 956-986 |
| Журнал | Theory of Computing Systems |
| Том | 63 |
| Номер выпуска | 5 |
| Дата раннего онлайн-доступа | 29 ноя 2018 |
| DOI | |
| Состояние | Опубликовано - июл 2019 |
| Опубликовано для внешнего пользования | Да |
ID: 49820484