DOI

We study the following computational problem: for which values of k, the majority of n bits MAJn can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk ∘ MAJk. We observe that the minimum value of k for which there exists a MAJk ∘ MAJk circuit that has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a randomized MAJk ∘ MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n2/3 + o(1). We show a worst case lower bound: if a MAJk ∘ MAJk circuit computes the majority of n bits correctly on all inputs, then k ≥ n13/19 + o(1).

Язык оригиналаанглийский
Страницы (с-по)956-986
ЖурналTheory of Computing Systems
Том63
Номер выпуска5
Дата раннего онлайн-доступа29 ноя 2018
DOI
СостояниеОпубликовано - июл 2019
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Математика и теория расчета

ID: 49820484