Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Comparison of multi-step forecasting methods for renewable energy. / Dolgintseva, E.; Wu , H.; Petrosian, O.; Zhadan, A.; Allakhverdyan, A.; Мартемьянов, Алексей Алексеевич.
в: Energy Systems, 07.03.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Comparison of multi-step forecasting methods for renewable energy
AU - Dolgintseva, E.
AU - Wu , H.
AU - Petrosian, O.
AU - Zhadan, A.
AU - Allakhverdyan, A.
AU - Мартемьянов, Алексей Алексеевич
N1 - Dolgintseva, E., Wu, H., Petrosian, O. et al. Comparison of multi-step forecasting methods for renewable energy. Energy Syst (2024). https://doi.org/10.1007/s12667-024-00656-w
PY - 2024/3/7
Y1 - 2024/3/7
N2 - Multi-step forecasting influences systems of energy management a lot, but traditional methods are unable to obtain important feature information because of the complex composition of features, which causes prediction errors. There are numerous types of data to forecast in the energy sector; we present the following datasets for comparison in the paper: electricity demand, PV production, and heating, ventilation, and air conditioning load. For a detailed comparison, we took both classical and modern forecasting methods: Bayesian ridge, Ridge regression, Linear regression, ARD regression, LightGBM, RF, Bi-RNN, Bi-LSTM, Bi-GRU, and XGBoost.
AB - Multi-step forecasting influences systems of energy management a lot, but traditional methods are unable to obtain important feature information because of the complex composition of features, which causes prediction errors. There are numerous types of data to forecast in the energy sector; we present the following datasets for comparison in the paper: electricity demand, PV production, and heating, ventilation, and air conditioning load. For a detailed comparison, we took both classical and modern forecasting methods: Bayesian ridge, Ridge regression, Linear regression, ARD regression, LightGBM, RF, Bi-RNN, Bi-LSTM, Bi-GRU, and XGBoost.
KW - Multi-step forecasting
KW - Energy forecasting
KW - Renewable energy
KW - Neural network
KW - Direct forecasting
KW - Recursive forecasting
KW - LightGBM
KW - Direct forecasting
KW - Energy forecasting
KW - LightGBM
KW - Multi-step forecasting
KW - Neural network
KW - Recursive forecasting
KW - Renewable energy
UR - https://www.mendeley.com/catalogue/b47a08c1-ea5a-3210-a18c-b7c4c66b126d/
U2 - 10.1007/s12667-024-00656-w
DO - 10.1007/s12667-024-00656-w
M3 - Article
JO - Energy Systems
JF - Energy Systems
SN - 1868-3967
ER -
ID: 111465097