Standard

Commutators of congruence subgroups in the arithmetic case. / Vavilov, N. .

в: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, Том 479, 2019, стр. 5-22.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vavilov, N 2019, 'Commutators of congruence subgroups in the arithmetic case', ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, Том. 479, стр. 5-22. <http://www.pdmi.ras.ru/znsl/2019/v479.html>

APA

Vavilov, N. (2019). Commutators of congruence subgroups in the arithmetic case. ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН, 479, 5-22. http://www.pdmi.ras.ru/znsl/2019/v479.html

Vancouver

Vavilov N. Commutators of congruence subgroups in the arithmetic case. ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН. 2019;479:5-22.

Author

Vavilov, N. . / Commutators of congruence subgroups in the arithmetic case. в: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН. 2019 ; Том 479. стр. 5-22.

BibTeX

@article{ea54531cb4c14147b23fd79923e8f672,
title = "Commutators of congruence subgroups in the arithmetic case",
abstract = "In our joint paper with Alexei Stepanov it was established that for any two comaximal ideals A and B of a commutative ring R, A+B = R, and any n > 3 one has [E(n, R, A), E(n, R, B)] = E(n, R, AB). Alec Mason and Wilson Stothers constructed counterexamples that show that the above equality may fail when A and B are not comaximal, even for such nice rings as Z[i]. In the present note, we establish a rather striking result that this equality, and thus also the stronger equality [GL(n, R, A), GL(n, R, B)] = E(n, R, AB), do hold when R is a Dedekind ring of arithmetic type with infinite multiplicative group. The proof is a blend of elementary calculations in the spirit of the previous papers by Wilberd van der Kallen, Roozbeh Hazrat, Zuhong Zhang, Alexei Stepanov, and the author, and an explicit computation of multirelative SK1 from my 1982 paper, which in turn relied on very deep arithmetical results by Jean-Pierre Serre, and Leonid Vaserstein (as corrected by Armin Leutbecher and Bernhard Liehl).",
keywords = "General linear group, congruence subgroups, elementary subgroups, standard commutator formulae, Dedekind rings of arithmetic type",
author = "N. Vavilov",
year = "2019",
language = "English",
volume = "479",
pages = "5--22",
journal = "ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН",
issn = "0373-2703",
publisher = "Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН",

}

RIS

TY - JOUR

T1 - Commutators of congruence subgroups in the arithmetic case

AU - Vavilov, N.

PY - 2019

Y1 - 2019

N2 - In our joint paper with Alexei Stepanov it was established that for any two comaximal ideals A and B of a commutative ring R, A+B = R, and any n > 3 one has [E(n, R, A), E(n, R, B)] = E(n, R, AB). Alec Mason and Wilson Stothers constructed counterexamples that show that the above equality may fail when A and B are not comaximal, even for such nice rings as Z[i]. In the present note, we establish a rather striking result that this equality, and thus also the stronger equality [GL(n, R, A), GL(n, R, B)] = E(n, R, AB), do hold when R is a Dedekind ring of arithmetic type with infinite multiplicative group. The proof is a blend of elementary calculations in the spirit of the previous papers by Wilberd van der Kallen, Roozbeh Hazrat, Zuhong Zhang, Alexei Stepanov, and the author, and an explicit computation of multirelative SK1 from my 1982 paper, which in turn relied on very deep arithmetical results by Jean-Pierre Serre, and Leonid Vaserstein (as corrected by Armin Leutbecher and Bernhard Liehl).

AB - In our joint paper with Alexei Stepanov it was established that for any two comaximal ideals A and B of a commutative ring R, A+B = R, and any n > 3 one has [E(n, R, A), E(n, R, B)] = E(n, R, AB). Alec Mason and Wilson Stothers constructed counterexamples that show that the above equality may fail when A and B are not comaximal, even for such nice rings as Z[i]. In the present note, we establish a rather striking result that this equality, and thus also the stronger equality [GL(n, R, A), GL(n, R, B)] = E(n, R, AB), do hold when R is a Dedekind ring of arithmetic type with infinite multiplicative group. The proof is a blend of elementary calculations in the spirit of the previous papers by Wilberd van der Kallen, Roozbeh Hazrat, Zuhong Zhang, Alexei Stepanov, and the author, and an explicit computation of multirelative SK1 from my 1982 paper, which in turn relied on very deep arithmetical results by Jean-Pierre Serre, and Leonid Vaserstein (as corrected by Armin Leutbecher and Bernhard Liehl).

KW - General linear group

KW - congruence subgroups

KW - elementary subgroups

KW - standard commutator formulae

KW - Dedekind rings of arithmetic type

M3 - Article

VL - 479

SP - 5

EP - 22

JO - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

JF - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

SN - 0373-2703

ER -

ID: 51601744