DOI

Given a fixed alignment scoring scheme, the bounded length (respectively, bounded total length) Smith-Waterman alignment problem on a pair of strings of lengths m, n, asks for the maximum alignment score across all substring pairs, such that the first substring's length (respectively, the sum of the two substrings' lengths) is above the given threshold w. The latter problem was introduced by Arslan and Eğecioğlu under the name “local alignment with length threshold”. They proposed a dynamic programming algorithm solving the problem in time O(mn2), and also an approximation algorithm running in time O(rmn), where r is a parameter controlling the accuracy of approximation. We show that both these problems can be solved exactly in time O(mn), assuming a rational scoring scheme; furthermore, this solution can be used to obtain an exact algorithm for the normalised bounded total length Smith-Waterman alignment problem, running in time O(mn log n). Our algorithms rely on the techniques of fast window-substring alignment and implicit unit-Monge matrix searching, developed previously by the author and others.

Язык оригиналаанглийский
Название основной публикации19th International Workshop on Algorithms in Bioinformatics, WABI 2019
РедакторыKatharina T. Huber, Dan Gusfield
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (электронное издание)9783959771238
DOI
СостояниеОпубликовано - сен 2019
Событие19th International Workshop on Algorithms in Bioinformatics, WABI 2019 - Niagara Falls, Соединенные Штаты Америки
Продолжительность: 8 сен 201910 сен 2019

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том143
ISSN (печатное издание)1868-8969

конференция

конференция19th International Workshop on Algorithms in Bioinformatics, WABI 2019
Страна/TерриторияСоединенные Штаты Америки
ГородNiagara Falls
Период8/09/1910/09/19

    Предметные области Scopus

  • Программный продукт

ID: 97181197