Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Boundary condition at the junction. / Harmer, Mark; Pavlov, Boris; Yafyasov, Adil.
в: Journal of Computational Electronics, Том 6, № 1-3, 01.09.2007, стр. 153-157.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Boundary condition at the junction
AU - Harmer, Mark
AU - Pavlov, Boris
AU - Yafyasov, Adil
PY - 2007/9/1
Y1 - 2007/9/1
N2 - When modeling a 2-d quantum network by a 1-d quantum graph one usually substitutes the 2-d vertex domains by the point-wise junctions with appropriate boundary conditions imposed on the boundary values ψ(a) = (ψ 1 (a), ψ 2 (a), ψ 3 (a), ...ψ n (a)), ψ′ = ψ′ 1 (a), ψ′ 2 (a), ψ′ 3 (a),... ψ′ n (a)) of the wave-function on the leads ω 1 , ω 2 ,...ω n at the junction a. In particular Datta proposed parametrization of the boundary condition, for symmetric T-junction, by some orthogonal 1-d projection P 0 : R n → R n P 0 ⊥ ψ(a) = 0, P 0 ψ′(a) = 0. We consider an arbitrary junction, n ≥ 3 of 2-d leads attached to a 2-d vertex domain Ω int , in case, when there exist a resonance eigenvalue λ = 2m* E∫ ℏ -2 of the Schrödinger operator L int . We derive, from the first principles, energy-dependent boundary conditions for thin, quasi-1-d, network, and obtain from it, in the limit of zero temperature, Datta-type boundary condition, interpreting the projection P 0 in terms of the resonance eigenfunction ψ 0 : L int ψ 0 = λ 0 ψ 0 and geometry of the leads.
AB - When modeling a 2-d quantum network by a 1-d quantum graph one usually substitutes the 2-d vertex domains by the point-wise junctions with appropriate boundary conditions imposed on the boundary values ψ(a) = (ψ 1 (a), ψ 2 (a), ψ 3 (a), ...ψ n (a)), ψ′ = ψ′ 1 (a), ψ′ 2 (a), ψ′ 3 (a),... ψ′ n (a)) of the wave-function on the leads ω 1 , ω 2 ,...ω n at the junction a. In particular Datta proposed parametrization of the boundary condition, for symmetric T-junction, by some orthogonal 1-d projection P 0 : R n → R n P 0 ⊥ ψ(a) = 0, P 0 ψ′(a) = 0. We consider an arbitrary junction, n ≥ 3 of 2-d leads attached to a 2-d vertex domain Ω int , in case, when there exist a resonance eigenvalue λ = 2m* E∫ ℏ -2 of the Schrödinger operator L int . We derive, from the first principles, energy-dependent boundary conditions for thin, quasi-1-d, network, and obtain from it, in the limit of zero temperature, Datta-type boundary condition, interpreting the projection P 0 in terms of the resonance eigenfunction ψ 0 : L int ψ 0 = λ 0 ψ 0 and geometry of the leads.
KW - Eigenfunction
KW - Eigenvalue
KW - Junction
KW - Scattering matrix
UR - http://www.scopus.com/inward/record.url?scp=34247340417&partnerID=8YFLogxK
U2 - 10.1007/s10825-006-0085-7
DO - 10.1007/s10825-006-0085-7
M3 - Article
AN - SCOPUS:34247340417
VL - 6
SP - 153
EP - 157
JO - Journal of Computational Electronics
JF - Journal of Computational Electronics
SN - 1569-8025
IS - 1-3
ER -
ID: 42239914