Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
When modeling a 2-d quantum network by a 1-d quantum graph one usually substitutes the 2-d vertex domains by the point-wise junctions with appropriate boundary conditions imposed on the boundary values ψ(a) = (ψ 1 (a), ψ 2 (a), ψ 3 (a), ...ψ n (a)), ψ′ = ψ′ 1 (a), ψ′ 2 (a), ψ′ 3 (a),... ψ′ n (a)) of the wave-function on the leads ω 1 , ω 2 ,...ω n at the junction a. In particular Datta proposed parametrization of the boundary condition, for symmetric T-junction, by some orthogonal 1-d projection P 0 : R n → R n P 0 ⊥ ψ(a) = 0, P 0 ψ′(a) = 0. We consider an arbitrary junction, n ≥ 3 of 2-d leads attached to a 2-d vertex domain Ω int , in case, when there exist a resonance eigenvalue λ = 2m* E∫ ℏ -2 of the Schrödinger operator L int . We derive, from the first principles, energy-dependent boundary conditions for thin, quasi-1-d, network, and obtain from it, in the limit of zero temperature, Datta-type boundary condition, interpreting the projection P 0 in terms of the resonance eigenfunction ψ 0 : L int ψ 0 = λ 0 ψ 0 and geometry of the leads.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 153-157 |
| Число страниц | 5 |
| Журнал | Journal of Computational Electronics |
| Том | 6 |
| Номер выпуска | 1-3 |
| DOI | |
| Состояние | Опубликовано - 1 сен 2007 |
ID: 42239914