Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › Рецензирование
Boundaries of Zn-free groups. / Малютин, Андрей Валерьевич; Смирнова-Нагнибеда, Татьяна; Сербин, Денис.
London Mathematical Society Lecture Note Series. Vol. 436.: Groups, Graphs and Random Walks. ред. / Tullio Ceccherini-Silberstein; Maura Salvatori; Ecaterina Sava-Huss. Том 436 Cambridge University Press, 2017. стр. 354-388 (London Mathematical Society Lecture Note Series; Том 436).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › Рецензирование
}
TY - CHAP
T1 - Boundaries of Zn-free groups
AU - Малютин, Андрей Валерьевич
AU - Смирнова-Нагнибеда, Татьяна
AU - Сербин, Денис
N1 - A.Malyutin, T.Smirnova-Nagnibeda, D.Serbin. Boundaries of Zn-free groups // in: Groups, Graphs and Random Walks. London Mathematical Society Lecture Note Series .— 2017.— Vol. 436.— P. 354-388.
PY - 2017
Y1 - 2017
N2 - In this paper, we study random walks on a finitely generated group G which has a free action on a Zn-tree. We show that if G is non-abelian and acts minimally, freely and without inversions on a locally finite Zn-tree Γ with the set of open ends Ends(Γ), then for every non-degenerate probability measure μ on G there exists a unique μ-stationary probability measure νμ on Ends(Γ), and the space (Ends(Γ),νμ) is a μ-boundary. Moreover, if μ has finite first moment with respect to the word metric on G (induced by a finite generating set), then the measure space (Ends(Γ),ν_μ) is isomorphic to the Poisson–Furstenberg boundary of (G, μ).
AB - In this paper, we study random walks on a finitely generated group G which has a free action on a Zn-tree. We show that if G is non-abelian and acts minimally, freely and without inversions on a locally finite Zn-tree Γ with the set of open ends Ends(Γ), then for every non-degenerate probability measure μ on G there exists a unique μ-stationary probability measure νμ on Ends(Γ), and the space (Ends(Γ),νμ) is a μ-boundary. Moreover, if μ has finite first moment with respect to the word metric on G (induced by a finite generating set), then the measure space (Ends(Γ),ν_μ) is isomorphic to the Poisson–Furstenberg boundary of (G, μ).
U2 - 10.1017/9781316576571.015
DO - 10.1017/9781316576571.015
M3 - Article in an anthology
VL - 436
T3 - London Mathematical Society Lecture Note Series
SP - 354
EP - 388
BT - London Mathematical Society Lecture Note Series. Vol. 436.
A2 - Ceccherini-Silberstein, Tullio
A2 - Salvatori, Maura
A2 - Sava-Huss, Ecaterina
PB - Cambridge University Press
ER -
ID: 15680981