DOI

In this paper, we study random walks on a finitely generated group G which has a free action on a Zn-tree. We show that if G is non-abelian and acts minimally, freely and without inversions on a locally finite Zn-tree Γ with the set of open ends Ends(Γ), then for every non-degenerate probability measure μ on G there exists a unique μ-stationary probability measure νμ on Ends(Γ), and the space (Ends(Γ),νμ) is a μ-boundary. Moreover, if μ has finite first moment with respect to the word metric on G (induced by a finite generating set), then the measure space (Ends(Γ),ν_μ) is isomorphic to the Poisson–Furstenberg boundary of (G, μ).
Язык оригиналаанглийский
Название основной публикацииLondon Mathematical Society Lecture Note Series. Vol. 436.
Подзаголовок основной публикацииGroups, Graphs and Random Walks
РедакторыTullio Ceccherini-Silberstein, Maura Salvatori, Ecaterina Sava-Huss
ИздательCambridge University Press
Страницы354-388
Число страниц35
Том436
ISBN (электронное издание)9781316576571
DOI
СостояниеОпубликовано - 2017

Серия публикаций

НазваниеLondon Mathematical Society Lecture Note Series
ИздательCambridge University Press
Том436

ID: 15680981