Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator. / Bibikov, Yu. N.; Bukaty, V. R.
в: Differential Equations, Том 55, № 6, 2019, стр. 753-757.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator
AU - Bibikov, Yu. N.
AU - Bukaty, V. R.
N1 - Bibikov, Y.N., Bukaty, V.R. Bifurcation of an Oscillatory Mode under a Periodic Perturbation of a Special Oscillator. Diff Equat 55, 753–757 (2019) doi:10.1134/S001226611906003X
PY - 2019
Y1 - 2019
N2 - We study a bifurcation from the zero solution of the differential equation ẍ + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.
AB - We study a bifurcation from the zero solution of the differential equation ẍ + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.
UR - http://www.scopus.com/inward/record.url?scp=85069203853&partnerID=8YFLogxK
U2 - 10.1134/S001226611906003X
DO - 10.1134/S001226611906003X
M3 - Article
AN - SCOPUS:85069203853
VL - 55
SP - 753
EP - 757
JO - Differential Equations
JF - Differential Equations
SN - 0012-2661
IS - 6
ER -
ID: 49226562