Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study a bifurcation from the zero solution of the differential equation ẍ + xp/q = 0, where p > q > 1 are odd coprime numbers, under periodic (in particular, time-invariant) perturbations depending on a small positive parameter ε. The motion separation method is used to derive the bifurcation equation. To each positive root of this equation, there corresponds an invariant two-dimensional torus (a closed trajectory in the time-invariant case) shrinking to the equilibrium position x = 0 as ε → 0. The proofs use methods of the Krylov-Bogolyubov theory to study time-periodic perturbations and the implicit function theorem in the case of time-invari ant perturbations.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 753-757 |
Журнал | Differential Equations |
Том | 55 |
Номер выпуска | 6 |
Дата раннего онлайн-доступа | 15 июл 2019 |
DOI | |
Состояние | Опубликовано - 2019 |
ID: 49226562