Документы

DOI

The loss of stability of a cylindrical panel under the action of uniform pressure is considered. As a model, the nonlinear
theory of shells from elastomers of K.F. Chernykh is used. The cylindrical bending of the panel is investigated. The problem
reduces to solving a nonlinear one-dimensional boundary value problem for a system of nonlinear ordinary differential equations
and the associated nonlinear system of algebraic equations. The solution of the nonlinear boundary value problem is based on
method the solution continuation on the parameter and Newton-Kantorovich’s linearization. The corresponding linear boundary
value problems are solved using the Godunov’s orthogonal sweep method. The numerical solution of the problem is realized in
the MatLab environment. The results are presented in the form of ”load-displacement” diagrams characterizing the process of both
symmetric loss of stability and asymmetric bifurcation from a symmetric state. Deformed shell shapes are given at various points
in the loading diagrams
Переведенное названиеБифуркация цилидрической панели из эластомера под действием равномерного давления
Язык оригиналаанглийский
Номер статьи160004
Число страниц4
ЖурналAIP Conference Proceedings
Том2425
Номер выпуска1
DOI
СостояниеОпубликовано - 6 апр 2022
Событие18th International Conference of Numerical Analysis and Applied Mathematics 2020 - Sheraton Hotel, Rhodes, Греция
Продолжительность: 17 сен 202023 сен 2020
Номер конференции: 18th
http://history.icnaam.org/icnaam_2020/ICNAAM%202020/icnaam.org/index.html

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 94203610