Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We consider a spectral homogenization problem for the linear elasticity system posed in a domain Ω of the upper half-space R3 +, a part of its boundary Σ being in contact with the plane { x3= 0 }. We assume that the surface Σ is traction-free out of small regions Tε, where we impose Winkler-Robin boundary conditions. This condition links stresses and displacements by means of a symmetric and positive definite matrix-function M(x) and a reaction parameter β(ε) that can be very large when ε→ 0. The size of the regions Tε is O(rε) , where rε≪ ε, and they are placed at a distance ε between them. We provide all the possible spectral homogenized problems depending on the relations between ε, rε and β(ε) , while we address the convergence, as ε→ 0 , of the eigenpairs in the critical cases where some strange terms arise on the homogenized Robin boundary conditions on Σ. New capacity matrices are introduced to define these strange terms.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 89-120 |
| Число страниц | 32 |
| Журнал | Journal of Elasticity |
| Том | 142 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - 1 ноя 2020 |
ID: 71562200