Research output: Contribution to journal › Article › peer-review
We consider a spectral homogenization problem for the linear elasticity system posed in a domain Ω of the upper half-space R3 +, a part of its boundary Σ being in contact with the plane { x3= 0 }. We assume that the surface Σ is traction-free out of small regions Tε, where we impose Winkler-Robin boundary conditions. This condition links stresses and displacements by means of a symmetric and positive definite matrix-function M(x) and a reaction parameter β(ε) that can be very large when ε→ 0. The size of the regions Tε is O(rε) , where rε≪ ε, and they are placed at a distance ε between them. We provide all the possible spectral homogenized problems depending on the relations between ε, rε and β(ε) , while we address the convergence, as ε→ 0 , of the eigenpairs in the critical cases where some strange terms arise on the homogenized Robin boundary conditions on Σ. New capacity matrices are introduced to define these strange terms.
| Original language | English |
|---|---|
| Pages (from-to) | 89-120 |
| Number of pages | 32 |
| Journal | Journal of Elasticity |
| Volume | 142 |
| Issue number | 1 |
| DOIs | |
| State | Published - 1 Nov 2020 |
ID: 71562200