Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Approximation of the Distance from a Point to an Algebraic Manifold. / Uteshev, Alexei ; Goncharova, Marina.
Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods : ICPRAM. ред. / Ana Fred; Maria De Marsico; Gabriella Sanniti di Baja. Том 1 SciTePress, 2019. стр. 715-720.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Approximation of the Distance from a Point to an Algebraic Manifold
AU - Uteshev, Alexei
AU - Goncharova, Marina
N1 - Uteshev, A. and Goncharova, M. (2019). Approximation of the Distance from a Point to an Algebraic Manifold.In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-351-3, pages 715-720. DOI: 10.5220/0007483007150720
PY - 2019
Y1 - 2019
N2 - The problem of geometric distance d evaluation from a point X0 to an algebraic curve in R2 or manifold G(X) = 0 in R3 is treated in the form of comparison of exact value with two its successive approximations d(1) and d(2). The geometric distance is evaluated from the univariate distance equation possessing the zero set coinciding with that of critical values of the function d2(X0), while d(1)(X0) and d(2)(X0) are obtained via expansion of d2(X0) into the power series of the algebraic distance G(X0). We estimate the quality of approximation comparing the relative positions of the level sets of d(X), d(1)(X) and d(2)(X).
AB - The problem of geometric distance d evaluation from a point X0 to an algebraic curve in R2 or manifold G(X) = 0 in R3 is treated in the form of comparison of exact value with two its successive approximations d(1) and d(2). The geometric distance is evaluated from the univariate distance equation possessing the zero set coinciding with that of critical values of the function d2(X0), while d(1)(X0) and d(2)(X0) are obtained via expansion of d2(X0) into the power series of the algebraic distance G(X0). We estimate the quality of approximation comparing the relative positions of the level sets of d(X), d(1)(X) and d(2)(X).
KW - Algebraic Manifold
KW - Level Set
KW - Discriminant
KW - Distance Approximation
KW - Algebraic Manifold
KW - Discriminant
KW - Distance Approximation
KW - Level Set
UR - http://www.scopus.com/inward/record.url?scp=85064632653&partnerID=8YFLogxK
UR - http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007271903420351
UR - http://www.mendeley.com/research/physical-activity-recognition-utilising-smartphone-sensor-signals
M3 - Conference contribution
VL - 1
SP - 715
EP - 720
BT - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods
A2 - Fred, Ana
A2 - De Marsico, Maria
A2 - di Baja, Gabriella Sanniti
PB - SciTePress
T2 - 8th International Conference on Pattern Recognition Applications and Methods
Y2 - 19 February 2019 through 21 February 2019
ER -
ID: 39524980